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Abstract
Current-day applications are written to execute on a wide range of platforms rang-

ing from fast desktop computers to mobile laptops all the way to hand-held PDAs and

cellular phones, spanning several orders of magnitude in processing, storage, and com-

munication capabilities. Applications running on these platforms may exhibit diverse

and unpredictable performance because of platform heterogeneity and varying resource

availability, resulting from competition with other applications or from migration of

applications themselves to a different execution environment. However, application

users typically expect a desired level of Quality of Service (QoS), either in terms of

performance optimization (e.g., shortest completion time) or in terms of predictabil-

ity (e.g., bounded completion time). This motivates development ofresource-aware

applications, which proactively monitor and control their utilization of the underlying

platform, and ensure a desired performance level by adapting themselves to changing

resource characteristics.

In this dissertation, we describe an application-independent adaptation framework

that simplifies the design of resource-aware applications. This framework eliminates

the need for adaptation decisions to be explicitly programmed into applications by re-

lying on three components: (1) atunability interface, which exposes adaptation choices

in the form of alternate application configurations while encapsulating core application

functionality; (2) avirtual execution environment, which emulates application execu-

tion under diverse resource availability enabling off-line collection of information about

resulting behavior; and (3)run-time adaptation agents, which permit monitoring and

steering of the application execution. Together, these components permit automatic

vi



run-time decisions onwhento adapt the application behavior by continuously moni-

toring resource conditions and application progress, andhow to adapt by dynamically

choosing an application configuration most appropriate for the prescribed user prefer-

ences.

We evaluate the framework using a distributed image visualization application and

a parallel image processing application. The framework permits automatic adaptation

to changes of execution environment characteristics such as network bandwidth and

image arrival pattern by switching application configurations to satisfy user preferences

for output quality and execution timeliness.
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Chapter 1

Introduction

1.1 Motivation

Current-day applications are written to execute on a wide range of platforms rang-

ing from fast desktop computers, mobile laptops, all the way to hand-held Personal-

Digital-Assistants (PDAs), cellular phones, and PC watches, spanning several orders

of magnitude in processing, storage, and communication capabilities, and differing in

the system support for application execution. Current desktop machines can have mul-

tiple gigahertz (GHz) processors, a gigabytes (GB) of memory, a hundred GB of hard

disk, and gigabits-per-second (Gbps) network cards. Laptop machines are typically

less powerful due to constraints on their size, weight, and battery life, with a single

CPU, less memory, smaller hard disk, and lower bandwidth network connectivity. The

power of PDAs is further limited: A Palm V only has a 16 MHz CPU (Motorola 68328)

and 2 megabytes (MB) of memory. These lower-end devices could be connected using

infra-red, wireless, and bluetooth [32] facilities; thus achieving different rates of data

transmission.
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With the trend of “write once, run everywhere” software, more and more applica-

tions are able to execute on these heterogeneous platforms or even migrate from one

platform to another at run time. For instance, Microsoft provides Win32 Application

Programming Interface (API) for all its Windows platforms such as Windows NT [55]

on desktop machines and or Windows CE [6] on hand-held PDAs (although Windows

CE only implements a subset of APIs supported by Windows NT). Applications written

using Win32 API can potentially execute on both desktops and PDAs running Microsoft

operating systems. With the popularity of virtual machines as execution platforms (e.g.,

the Java virtual machine (JVM) [47] or the Microsoft .net platform [56]), it is possible

for the same application to execute on heterogeneous devices with different OSes. For

example, a Java application may be able to run on both Palm Pilot PDAs with PalmOS

and desktop machines with the Windows NT operating system, even though the K Vir-

tual Machine (KVM) [59] on the former is only a core subset of a full-featured JVM

running on the latter.

However, these applications may exhibit diverse and unpredictable performance due

to heterogeneous power of physical platforms in processing, storage, and communica-

tion capabilities, as well as to dynamically varying resource availability resulting from

competition with other applications or migration of (parts of) applications to a different

execution environment [50].

However, such widely varying performance is at odds with the expectations of ap-

plication users who typically expect a desired level of Quality of Service (QoS). For

example, a user viewing a large image over the network may expect that the response

time be reasonable. Because this cannot be met on all platforms for a high resolution

image, we take advantage of the fact that the user’s expectation are not absolute—there
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is some flexibility in expressing his expectations: he may prefer a detailed map when

using a powerful desktop computer with a high bandwidth network link; however, he

may prefer responsiveness at the cost of a lower resolution when using a connected

hand-held device with a thin network link.

However, taking advantage of this flexibility in user expectations requires the ability

to express user preferences as well as applications’ capability to deliver these prefer-

ences despite different execution scenarios. More generally, this motivates the design

of resource-aware applications, which proactively monitor and control its execution

and utilization of the underlying platform, can ensure a desired performance level by

adapting themselves to changing resource characteristics. For instance, a distributed

application conveying a video stream from a server to a client can respond to a reduc-

tion in available network bandwidth by compressing the stream or selectively dropping

frames. In other words, applications need to be aware of alternate ways to execute

as well as the execution environment, and dynamically select an appropriate behavior

to adapt to changes of resource availability and satisfy user preferences. These alter-

nate ways to execute could be statically programmed, or dynamically generated and

injected into executing applications. In essence, they correspond to different execution

paths and provide tradeoff among resource requirements, application performance, and

even functionality.

1.2 Application Adaptation

An application may have multiple forms that suit different execution scenarios. In the

application source code, these multiple execution forms may take different algorithms

to achieve the same functionality, different settings for the same algorithm, or consists

3



of different modules for add-on and more refined computation. At run time, these

multiple forms present flexible ways of execution, resulting in different execution path

and more importantly different resource requirements and performance levels. The

various ways of execution at run time can be viewed as differentconfigurationsthat

could be selected based on the changes of resource conditions.

The importance of adapting application behavior to the run-time scenarios such

as resource conditions or external events has been understood for a long time. The

traditional way to enable adaptation is to explicitly program it into applications. For

instance, the TCP protocol responds to network congestion by adaptively deciding an

appropriate size of the sliding window and a timeout period for retransmission. Current

TCP implementations have been highly optimized for transmitting a large amount of

data. However, the drawback with such an approach is that they presuppose all possible

patterns of usage. Optimizations based on these assumed usage patterns may not work

well for other scenarios. For instance, it has been shown [8] that the default configura-

tion for TCP yields unnecessary delays for short HTTP request/reply traffic (that could

be avoided by a specific setting of socket options). Also, TCP resizing protocols have

been shown to be poorly suited to high bandwidth transmission in Wide Area Network

(WAN) environment [24].

Although adaptation has been programmed into various applications, little support

is available for structuring general-purpose resource-aware applications. Several re-

search projects have begun to address this shortcoming [17, 44, 46, 52, 57, 51]; how-

ever, most such efforts place a substantial burden on application developers requiring

them to provide explicit specification of bothresource-utilization profiles(which re-

sources are used at which time and in what quantity), andadaptation behaviors(how

4



applications react to changes in resource conditions).

More robust application adaptation is possible if programmers only identify what

the alternate configurations are, leaving it up to the run-time system to automatically

select an appropriate configuration based on execution environments. We focuses on

how to enable the development of adaptive applications without these adaptation de-

cisions to be explicitly programmed; thus simplifying the development and supporting

more flexible adaptation policies.

We observe that many parallel and distributed applications contain parameters (i.e.,

variables) that have multiple reasonable (schemes of) settings, such as the value of

timeout for retransmission in TCP. The particular setting or scheme adopted are usually

optimized for an expected run-time environment. However, in today’s platforms of

ever-increasing heterogeneity, the adopted form may not work well in all environments;

attesting the need for multiple configurations of applications.

We study theperformance benefitof automatic application adaptation from mul-

tiple application configurations in parallel and distributed environments, in particular

focusing upon answers to the following questions:

1. what are configurations of an application?

2. how to specify application configurations?

3. how to evaluate the performance of these application configurations?

4. how to monitor the resource availability of the execution environment?

5. how to dynamically select the appropriate application configuration based on

changes of resource availability at run time?

6. what are the performance benefits of multiple application configurations?

The answers to these questions allow us to devise mechanisms to expose different

5



configurations of applications and dynamically choose the appropriate configuration to

adapt to changes of execution environment such as resource availability, or in a more

general form, occurrences of some specific events. These mechanisms in turn can avoid

the explicit programming of adaptation decisions into applications.

1.3 Approach

We assume applications of interest already contain flexibility in their implementation,

although they may be fixed to one configuration by default. The execution flexibility is

controlled by some control “knobs”, different settings of which correspond to different

configurations. However, these control knobs are typically implicit in the program. We

abstract different configurations out by promoting these implicit parameters to appli-

cation control structures that can be manipulated from outside of applications. Thus,

application adaptation is the switching from one configuration to another configuration

by manipulating the explicit control structures, with decisions made and enforced by

system components other than applications themselves. However, to make appropriate

adaptation decisions, it is necessary to know the performance levels of all the appli-

cation configurations as well as the current execution conditions, requiring an entire

infrastructure collaborating together to delivered user-preferred performance levels. In

this dissertation, we construct a framework that exposes configurations of arbitrary ap-

plications, evaluates their performance, and dynamically switches among them to adapt

to changing execution environments.

6



1.4 Contributions

This dissertation proposes, from the point of view of resource management, the notion

of application tunabilityas an abstraction for multiple application configurations, and

studies the benefit of application tunability. It presents a framework for the automatic

adaptation of tunable applications, including language annotations that addtunabil-

ity interfacesto traditional applications, avirtual execution environmentthat permits

modeling of application behavior under various resource conditions, andrun-time com-

ponentsthat monitor resource availability and automatically adapt applications for a

desired level of service. It evaluates this framework with two example applications: a

parallel image processing application called Junction Detection [38] and a distributed

visualization application called Active Visualization [11].

1.5 Organization

Chapter 2 introduces the project background and the notion of tunability, and discusses

related work. Chapter 3 proposes a general framework for enabling automatic adap-

tation of tunable applications in response to external changes. Chapter 4 studies the

tunability interface: the language annotations that expose alternate configurations of

applications, enabling run-time monitoring and control of application execution. Chap-

ter 5 presents the design and implementation of a virtual execution environment that

simulates various resource conditions, and describes its use for modeling application

behavior. Chapter 6 describes the run-time components that monitor execution envi-

ronment and steer application execution to adapt to changes of resource conditions.

Chapter 7 evaluates the benefit of tunable applications, using simulation to show how

7



tunability can help achieving better system-wide resource utilization. Chapter 8 and

Chapter 9 present two case studies, using a parallel image processing application and

distributed visualization application. Finally, Chapter 10 concludes and discusses fu-

ture work.

8



Chapter 2

Background

This chapter states the problem of application adaptation, defines the terms that will be

used in the later chapters, and discusses related work.

2.1 Application Structure

With structured programming, applications are usually written in termsmodules, with

some of the modules aggregated into standard libraries (e.g., libraries for data com-

pression). Lately, with the popularity of object-oriented programming, applications

have began to be written by composing more general components together, such as in

the Java Beans model [21] or the Microsoft COM model [60]. In this dissertation, the

termcomponentis used to broadly refer to the modules, libraries, and objects that appli-

cations are constituted of. These components are linked with control flow mechanisms

such as function invocation, message passing, event triggering, and remote procedure

call (RPC).

For distributedapplications, components can be located and execute concurrently

9



on multiple machines, relying on high-level protocols for communication such as IIOP

in CORBA [42], ORPC in distributed COM [60], and RMI in Java. The termapplica-

tion instanceis used to denote the execution of components on a particular machine.

As a special case, client-server applications are viewed as distributed with some com-

ponents running on one machine implementing the server logic and other components

running on another machine implementing the client logic.

For parallel applications, a single component can execute on multiple processors

(or machines) in parallel. These parallel applications, written in a specialized language

such as HPF [45] or CC++ [9], exploit support from the underlying system for com-

munication, synchronization, and concurrent execution. Calypso [3] is such a system

described in Chapter 9.

Typically, parallel and distributed applications are written with an expected run-

time execution environment in mind, including both the explicit expectation such as

the operating systems (OSes) and implicit expectation such as the amount of physical

memory and the bandwidth of network link. Realization of the former is critical to

the correct functioning of applications. For instance, applications written for Microsoft

Windows may not execute at all on the Linux operating system (without an intermediate

layer such as VMware [61]). Realization of the latter may only affect the application

performance. For instance, applications expecting high network bandwidth may not

perform optimally under a low bandwidth situation, though they may still be able to

execute correctly. In such a scenario, changing of communication protocols may result

in better performance.

With the trend that software components are increasingly becoming standardized

and their execution environments more heteregeneous, mobile, and dynamic, the per-
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formance of applications are more unpredictable and showing a wider range of vari-

ance. Nonetheless, application users are demanding a desired level ofQuality of Service

(QoS), expecting applications to execute in a predictable fashion.

The termQoSwas first introduced in networking research for guaranteed or differ-

entiated service. It is used in this dissertation to denote performance of applications,

with servicereferring to application computation and communication functionality and

quality referring to performance metrics. QoS permits application users to specify a

preferred performance level in terms of the metrics of interest, as well as how perfor-

mance should be degraded if the preferred level cannot be achieved. For example, when

the network bandwidth drops, a user viewing a large image can choose to wait longer

or to be satisfied with a lower resolution. QoS provides applications two levels of con-

trol. At the first level, applications can adapt to maintain the same level of performance

requested by users despite of changes in execution conditions. At the second level, ap-

plications can choose how to degrade to a less preferred level. The essence of QoS is

that it permits users to have different choices for the same functionality.

2.2 Adaptation for Performance

Since the heterogeneity and dynamic changes of resource availability in application

execution environment often result in unpredictable performance, it is necessary for

applications to cope with different execution conditions to ensure a specific level of

user satisfaction. These conditions could include the capacities of physical resources

such as CPU, memory, disk, and network; properties of logical resources such as files

and software services; as well as characteristics of input data and user interactions. In

an ideal scenario, adaptation for performance allows applications to maintain a pre-
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scribed performance level even in presence of changes of execution conditions. More

practically however, degradation of performance level might be satisfactory if users can

control how performance should be degraded.

For applications composed of software components, adaptation can be achieved us-

ing mechanisms belonging to two categories: (1) changingbehavior of components

and (2) changing thecomponents that make up applications. The mechanisms taken

to shield certain changes in execution environment are typically specific to the appli-

cations themselves or the type of the data they process. These mechanisms could be

programmed into the applications or installed dynamically in the middleware such as

acting as a proxy between application instances. In either cases, the application can be

made aware or unaware of the adaptation.

This general problem of adaptation for performance also make it necessary for users

to specify their constraints of performance. The latter is usually described by a vector

of metrics of which different users may regard the importance in different orders. In

essence, these constraints specify policies for adaptation: for instance, an adaptation

can only degrade 20% of one particular performance metric within the first 30 sec-

onds; or a metric must have an absolute value smaller than a given figure. In general,

enforcing these constraints requires the knowledge of how a particular configuration

performs with the current execution condition. This knowledge could be either stati-

cally collected, or dynamically measured, or use a hybrid approach. The enforcement

could consider only the requirement and performance of the single application, or take

into account the competition or collaboration among multiple co-existing applications.

In this work, we restrict our attention to applications with flexibility in configu-

rations statically programmed instead of dynamically injected, to simple interface for
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specifying user-specific performance constraints, and to the static collection of config-

uration behavior. It provides an interface so that various enforcement policies could

be plugged in. However, it does not focus on how various scheduling algorithms that

enforce a particular policy.

2.3 Related Work

Although examples of component-level adaptation (e.g., TCP congestion control) abound

in literature, here we focus our attention to application-wide adaptation involving mul-

tiple components, which has recently began to attract a great deal of attention.

TheOdysseyproject [51] provides a platform for application-aware adaptation that

changes data fidelity of applications (i.e., quality of the output) in response to resource

changes (such as that of network bandwidth). It relies on operating system or middle-

ware to monitor resource conditions and requires knowledge of specific data types (e.g.,

JPEG). The latter enables type-specific definition for fidelity and adaptation mecha-

nisms (e.g., degrading the resolution), using type-specificwardencomponents. Inside

a warden, various adaptation decisions could be made and actions performed, for in-

stance, prefetching and caching data of a lower fidelity. Odyssey provides an API

interface for applications communicating with the warden. In essence, the warden acts

as a filter on the path of the data transmission and can take advantage of type-related

mechanisms for a particular type of data. Thus, wardens rely only on type-specific

knowledge instead of application-specific knowledge.

TheDarwin project [52] permits a flow-centric application to specify its resource

requests in the form of a virtual mesh of nodes (representing desired services) and

edges (denoting communication flows). The virtual mesh can be mapped to physical
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service nodes and links in alternate ways to permit optimization of available resources.

It allows application-specific “delegates” to be associated with flows for detecting and

handling changes to flow metrics; and thus decides the best mapping of application

virtual mesh to physical service nodes and links.

TheNinja project [28] intends to build upon and expand the notion of Web-based

services by providingcomposibility(the ability to automatically aggregate multiple ser-

vices together into a single entity),customizability(the ability for users to inject code

into the system to customize a service’s behavior), andaccessibility(the ability to ac-

cess the service from a wide range of devices, including PCs, workstations, cellphones,

and PDAs). It proposes to use apathcomposed by strongly-typedoperators(i.e. soft-

ware components) to describe the application structure between services and end-users

on the Internet.Active proxiescould be injected into the path to customize the data and

access protocols (e.g., translation between HTML and WML) between the end-user de-

vices and the services, thus enabling dynamic service adaptation. Although injecting

the intermediaries into the data flow path does not require modification of end-points

application instance as in Odyssey, it does require programmers to have knowledge of

the protocols and data formats and rely on application usage of these standard protocols

and formats.

The Active Harmony project [44, 33] presents and exposes application alterna-

tives through an interface based on TCL scripts. It requires applications to specify

the resource utilization of each of their execution options as well as the correspond-

ing performance. With this information, the system selects the best option to execute.

For instance, it could dynamically select between two different placement options of

a database queries based on server load: query-shipping where queries are executed at
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the server and data-shipping where queries are executed at the client.

The AppLeS project [4, 58] provides application-level mechanisms and resource

monitoring tools to enable general applications to adapt to changing resource charac-

teristics. Applications can have customized resource utilization policies and conse-

quently different execution schemes. For instance, applications can decide their own

task placement (of application instances to machines) based on execution conditions.

AppLeS tools support incorporation of these policies into the execution system for op-

timized performance.

In Quality Object (QuO) framework [64, 53], applications can be explicitly pro-

grammed with different levels of performance (i.e., different contract regions) and per-

formance requirements of remote method invocations. It provides QoS Description

Language (QDL) and Configuration Setup Language (CSL) components to support the

development of distributed applications with QoS requirements. The former associates

QoS constraints to function calls and permits remote method invocations to be dis-

patched to alternate remote objects. The latter permits application execution to switch

between different contract regions based on dynamic system conditions.

TheERDoSproject [17] proposes dynamic application structuring where a service

can be implemented with several logical realizations (using a workflow model provided

by the project) and applications can be structured in multiple ways. The selection of

a particular structure is based on a user-provided benefit function. For instance, users

could choose between different encryption algorithms to achieve different level of secu-

rity. ERDoS provides System Development Tools (SDT) to allow developers to create

applications, describe resources, and specify benefit functions.

TheEPIQ project [57, 36] supports automatically trading off output quality against
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resource requirements. It views computations as composed of a DAG of tasks where

each task can be associated with QoS metrics and resource requirements. Applications

could dynamically negotiate a certain performance level (in terms of QoS metrics) for

each task and dynamically compose them together to achieve a specific benefit/utility

function.

The Imprecise Computation model [35, 34] views computation as consisting of

two parts: a mandatory part and an optional part. The mandatory part must be executed

for a task to meet the minimum quality requirement while the optional part contributes

to an improvement in output quality. Therefore, the amount of computation that is

actually executed can be dynamically decided according to the resource availability of

the execution environment.

All of these projects support the idea of alternate representations of data (e.g., mul-

tiple image resolutions) or alternate execution paths of applications. The dynamic se-

lection of the appropriate option constitutes application adaptation. In fact, the idea of

alternatives can be found in quite a few systems. For instance, HyperText Markup Lan-

guage (HTML) [5] provides anALT attribute for image elements that allow browsers

to choose whether to use text or images based on processing constraints or user pref-

erence. As another example, a Java applet withmain() method defined could be

executed both inside a browser or as a stand-alone application, providing alternate en-

try points and potentially execution paths suitable for different resource constraints and

security constraints.

We observe that most of the above systems involve a fair amount of effort from

programmers. In addition to describing what constitutes different configurations of ap-

plications, they also require programmers to specify the specific resource conditions in
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which a given configuration can operate as well as the performance of the configura-

tions under these conditions. They typically integrate explicit adaptation policies into

applications by combining these with application-specific schedulers.

In the ideal case, programmers need only specify what are the alternate configu-

rations, with the system automatically making adaptation decisions based upon condi-

tions of the execution environment. This moves the policy enforcement outside of appli-

cations themselves, permitting flexible optimization to possibly dynamically changing

objectives. It is this perspective that motivates our work described in this dissertation.

2.4 Our Model

We observe that many applications can be executed in one of multiple configurations:

either execute the same component with different parameters or execute entirely differ-

ent components. These multiple configurations presenttradeoffsand may be suitable

for different execution scenarios. We refer to this flexibility asapplication tunability.

Note that in this dissertation, we assume the flexibility already exists in applications

although the mechanisms for statically or dynamically injecting more flexibility (such

as by loading an appropriate substitute library) is also an interesting problem.

Application tunabilityrefers to an application’s ability totrade off resource require-

ments over several dimensions, including time, output quality, and resource type. Tun-

able applications are able to compensate for a lower allocation of resources in a stage

of the computation either by requiring a higher allocation in another stage, or by lower-

ing output quality, or by raising demand for resources of a different type. Application

tunability provides flexibility to the underlying resource management system, which

can now select an application operating point that improves overall system utilization,
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while still ensuring that an application meets the user predictability requirements.

Although applications can be written to be adaptive in a case by case fashion, it is

desirable that adaptation be supported at the system level without much programmer

involvement. The notion of application tunability bridges the composition of appli-

cations, resource usage, and performance metrics (i.e., output quality); thus enabling

automatic application adaptation. We propose a framework that can evaluate different

application configurations, and support automatic configuration to ensure applications

to achieve a desired level of performance, while minimizing the programmer’s involve-

ment in performance-related considerations. With this specific objective in mind, we

can further define our view of adaptation and list what questions have to be resolved to

achieve this goal.

Refinement of the adaptation problem Given an application in source code form built

of components, possibly with alternate components that can substitute those used in the

application, a new application could be constructed in the following fashion. The origi-

nal component can be extended into a container of components with guard expressions

specifying which component to select for a particular execution. All the components in

one container achieve the same (or similar) functionality and present the same interface

for interaction with other parts of the application. The guard expression controls the

execution of the container; in the case of the container that holds only one component,

different values of its guard expression may correspond to different execution behav-

iors of the same component. The values of the guard expressions should be dynamically

updated so that the application execution is optimized, based on the external execution

conditions, including the characteristics of the input data and resource availability of

the execution platform. This updating process is denoted asconfiguringor adapting
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the application since it decides which component is executed and in which way. The

components executed along the control flow path constitutes anexecution path.

To realize this model, several problems need to be resolved:

1. What language constructs are needed to specify the interface of components?

These language constructs must support the comparison of the alternate compo-

nents and define the application-specific meaning ofoptimization of execution.

In addition, all the necessary run-time system for application configuration and

adaptation should be generated from these language constructs.

2. How to evaluate the alternate components and different execution paths?The

evaluation examines which selection of the components performs better under

certain external conditions and forms the foundation for application configuration

at run time.

3. How to monitor external conditions and the execution of applications?The re-

source conditions and application progress are crucial for run-time adaptation.

Typically, adaptation is triggered by a change of external conditions or applica-

tion internal state.

About problem 1 We use annotations to application source code to allow specifica-

tion of alternate application configurations. These annotations, collectively referred to

as thetunability interface, expose different “knobs” to control application execution.

Annotations have been in practical use as language extensions for a long time. For ex-

ample, directives have been used for helping compiler tools (e.g., specifying alignment

of data structure) and for parallel processing systems (e.g., for programmers to describe

parallel tasks). Similarly, Java Server Pages (JSP) [25] supports annotation of HTML

pages using Java code and special tags (e.g.,tag <%! for class-level declarations) so
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that execution of the Java annotation combined with HTML can generate dynamic web

pages on the fly.

Export of control interface can also be supported by other mechanisms besides

source-level annotation. For instance, publicly-declared variables and methods in Java

applets are implicitly exported to Javascript code in the same web page, allowing the

latter to control the former’s execution [63]. Microsoft Component Object Model

(COM) [60] allow specification of properties (i.e., variables) and interfaces (i.e., func-

tions) visible for outside usage at the binary level (i.e., in EXE or DLL files). Jav-

aBeans [21] supports a similar idea for the Java programming language. As an en-

hancement, these models can support exporting multiple interfaces of an component

and provide reflection mechanisms to learn about and invoke different interfaces. This

ability could be combined with application tunability to export interfaces for select-

ing different application configurations. Ideally, future applications would all written

to export necessary information so that different execution behavior could be easily

controlled. However, for applications designed without exposing alternate behavior in

mind, source-level annotation or binary-level interception is needed to enable adapta-

tion, which is the approach we pursue in this work.

About problem 2 We use profiling approach to evaluate different configurations and

obtain their behavior under various resource conditions. This requires the control

of different levels of resource availability to applications. Existing approaches such

as [49, 40, 41, 2, 7, 54] permit reservation of resources or fair sharing of resources,

which can be used to guarantee applications a certain resource level. However, all

these systems require modification of OS kernels and are not designed for simulating

different resource conditions. This motivates the design of our own user-level virtual
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execution environment on COTS operating systems (such as Windows NT or Linux)

that simulates resource availability to applications. It provides the basic building block

for driver programs that enumerate application configurations and vary resource condi-

tions to obtain application performance behaviors.

About problem 3 We build monitoring tools to estimate resource availability such as

that of CPU and network; we also structure applications in a flexible way to allow

external events to be sent to them. The latter permits plugin of other monitoring tools

into the our framework.

Many projects have studied the monitoring of system resources. For instance, the

Remos system [48, 31] presents a structure for collecting resource information and

a set of APIs for applications to query resource information. Apertos [39] proposes

building adaptive operating systems using the reflection mechanism. Meta-level objects

(reflectors) are used to hold the information about system components and act as an

interface to manipulate the components’ execution environment.

Our framework could plug in existing monitoring systems as external agents to

attain environmental information. For studying our example applications, we have

developed our own monitoring agents that keep track of CPU and network resource

availability or other external events.

Based on an understanding of these three problems, we can build a framework that

avoids explicit programming of adaptation decisions into adaptive applications. Our

framework differs from the existing systems principally in the division of responsibil-

ity between application developers and the execution system. Application developers

are required only to expose the adaptation structure of applications using the tunability

interface. The execution system takes responsibility for obtaining application behav-
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ior profiles using a virtual execution environment, and incorporating these profiles into

adaptation decisions at run time. The tunability interface insulates the resource sched-

uler from application-specific knowledge. As far as we know, our strategy is unique

in its use of a virtual execution environment for automatically modeling application

performance under diverse resource conditions.
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Chapter 3

An Adaptation Framework for

Tunable Applications

Many applications exhibit “tunability” opportunity: the existence of multiple ways of

execution. One of these configurations may deliver the best performance in a specific

execution environment; however another one may perform better in a different environ-

ment. We can build a framework to expose, parameterize, and control the selection of

application configurations based on execution conditions. This chapter elaborates the

notion of application tunability and describes the application adaptation framework.

The framework was originally proposed and refined in [13, 14].

3.1 Application Tunability

We observe that many applications implicitly contain parameters (i.e., variables) that

control the way applications execute. These parameters typically give different settings

for application component, turn on or off the execution of a component, or control the
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selection of alternate components in the execution path. In software development prac-

tice, typically a large amount of alternate components are developed to achieve the same

functionality with different algorithms (e.g., various sorting algorithms and compres-

sion methods). These alternate components may be statically included by application

developers into applications as an effort to explore the best setting for an expected ex-

ecution scenario, or dynamically included by loading a shared library (e.g., DLL) or

class file, or by injecting intermediaries between application instances. In our model,

we assume that this flexibility already exists in applications; and we focus on how to

expose, parameterize, and control it. This assumption is satisfied by a large number

of applications. For instance, a component for retrieving a multi-resolution image may

have a local variable controlling the resolution level; a lossy compression algorithms

may have a parameter controlling fidelity of the data; a parallel application may have

a variable reflecting the number of processors it is using and partition its data set ac-

cordingly; a web browser may have a variable to turn on or off the use of a proxy; a

fault-tolerance algorithm may have a parameter deciding the number of replicas to use;

a database server may have a variable controlling alternate algorithms (i.e. components)

to use to build indexes on a particular database. In execution, the different settings for

these parameters may require different amount of resources and deliver different levels

of performance.

Tunabilityrefers to an application’s ability to trade off resource requirements over

several dimensions, including time, quality, and resource type, while still producing an

output of adequate quality. Application tunability is a characteristic of many parallel

and distributed computations. The key attribute unifying all tunable computations is the

availability of alternate application configurations, each corresponding to a different
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path of execution and resource requirement profile. The differences in the resource

utilization profiles of the alternate configurations can be characterized as tradeoffs along

several dimensions: (i)time, (ii) resource types, and (iii) output quality.

Trading off resource requirements over time means that a large allocation of re-

sources in one stage of the computation’s lifetime can compensate for a small alloca-

tion in another stage, or vice versa. For example, an artifact recognition application

may first sample different portions of the image to decide on interesting regions, and

then run a resource-intensive algorithm on these regions; spending more resources on

the sampling step reduces the work that will need to be performed in the analysis step.

Trading off resource requirements over resource types means that a large allocation

of a particular type of resource can compensate for a small allocation of another type of

resource, either in the same or a different stage of the computation’s lifetime. For ex-

ample, a multimedia data transmission application may send data either in compressed

format or in its original form. Choosing a compressed format would save network band-

width at the expense of more computational power required for on-the-fly compression

and decompression. The application can thus trade off computational resources versus

network resources by deciding whether or not to compress the data before injecting it

into the network.

Trading off resource requirements over output quality means that applications can

compensate for a reduced resource allocation by varying the quality of output, while

still operating in an acceptable range. For example, in several scientific computation

applications where approximate results are acceptable, investing additional compute

resources beyond an acceptable point will improve the accuracy of the result.

Along these tradeoff dimensions, application tunability provides flexibility to the
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underlying resource management system, which can now use the choice in resource

allocation profiles to increase the number of applications that can be admitted into the

system, as well as for ensuring that the user preferences for performance levels are

satisfied.

Example applications In this dissertation, we use two example applications to study

how tunability enables adaptation to changes of external conditions, such as network

bandwidth or the overall resource requirements for system resources. Details are de-

scribed in Chapter 8 for theActive Visualizationapplication and in Chapter 9 for the

Junction Detectionapplication.

Active Visualization is a client-server image visualization application that allows

users to interactively view large images stored at the server side. It uses multi-resolution

and progressive transmission techniques. For each user interaction, the client sends a

request for data of certain area (controlled in the program by a parameter namedf )

and of a certain resolution (controlled by a variable namedl ). The server retrieves

the data of the requested resolution and compresses it with some compression method

(indicated by a variable namedc ), and sends the data back to the client. This process

continues until the entire image is transmitted from the server to the client. The choice

of these parameters corresponds to different configurations of this application, and leads

to different resource requirements. For instance, the choice of different compression

methods may trade off the requirements of CPU and network resources because they

may achieve different compression ratio with different amount of computation. For this

application, tunability allows flexibility in the way the application is executed and the

way user preference (such as that for a high image resolution) is expressed.

Junction Detection is a parallel image processing application that detects pixels
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where color or intensity changes abruptly (i.e., junctions). It has three steps: the first

step samples the input image with some granularity to find interesting points; the second

step draws a convex hull around those interesting points to define interesting regions;

and the third step performs an intensive computation to find all of the junctions inside

interesting regions. Two of its parameters are interesting to us: the sampling granu-

larity and the number of processors allocated to the parallel computation. For the first

parameter, a finer sampling granularity may reduce the size of the interesting region

and thus the amount of computation in the third step; however, at the cost of more

computation to perform the sampling itself. The amount of increment or decrement in

computation depends on the complexity of algorithms used in these two steps and is

moreover influenced by the characteristics of the input data. For the second parameter,

more processors allocated to the application will lead to a shorter time to process the

image. However, with more processors allocated, the application may not be able to

use them all efficiently; in other words, the speedup function may not be linear. The

choice of this parameter allows the tradeoff of the performance of this single appli-

cation against the overall system resource utilization. For this application, tunability

allows optimization of application performance based on external events, such as the

characteristics of the input data and overall requests for system resources.

3.2 Adaptation Framework

Application tunability can help to achieve application adaptation: some of the multiple

configurations may better match different execution conditions because of the tradeoffs

in the resource requirements of these configurations. A resource management architec-

ture, which is aware of the multiple configurations, can exploit the differences among
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their resource utilization profiles to select a configuration that best matches the charac-

teristics of available system resources. This requires exposing these configurations to

the outside system, parameterizing them in terms of their matching resource conditions

and corresponding performance level, and devising appropriate components and inter-

faces to monitor resource availability and dynamically selecting the best configurations

to satisfy user preference.

Given an application consisting of components in source code and some alternate

components, our approach first annotates the application source code with specialized

language constructs called thetunability interface, exposing the alternate configurations

(see Figure 3.1). A preprocessor processes theannotationsand generates a tunable

version of the application. The critical feature of this tunable application is the existence

of multiple execution paths, selecting among which can happen dynamically at run

time.

To model the behavior of the various configurations and obtain what kind of execu-

tion conditions they suit for, these configurations are evaluated on avirtual execution

environmentwith different resource conditions, obtaining aperformance databasethat

maps application configurations and resource conditions to the performance metrics.

At run time, user preferences are given in terms ofQoS constraints. Dynamic re-

source conditions are monitored by amonitoring agentplugged in by the preprocessor.

A resource schedulerobtains the resource information from the monitor, and computes

the most appropriate configuration for the application. It controls the application’s exe-

cution by sending control messages to itssteering agentgenerated by the preprocessor,

which in turn sets up the application to execute the particular configuration.

During execution of the application, the monitoring agent keeps track of both the
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Figure 3.1: Application configuration and adaptation framework.

resource conditions and application progress, triggering a performance exception when

either of them drops below a threshold. This exception signals the scheduler to recom-

pute the most appropriate configurations the application must adapt to in order to best

satisfy the user preferred performance level.

The following chapters will describe the various components in the adaptation frame-

work. Chapter 4 discusses the tunability interface used for annotating the original appli-

cations. Chapter 5 introduces a novel tool providing the basis for the virtual execution

environment for profiling application configurations. Chapter 6 describes various run-

time components, including the monitoring agent, the steering agent, and the resource

scheduler. The evaluation of this framework using our example applications are de-

scribed in Chapter 8 and Chapter 9, respectively.
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Chapter 4

Tunability Interface

Although many applications are developed with specific execution scenarios in mind,

they could be ported to suit other conditions by slightly changing their execution behav-

iors; for example, only computing an imprecise output when resources are not abun-

dant. This flexibility allows static applications to be promoted to tunable applications.

This promotion in general is performed in a stageindependent of application develop-

ment; nonetheless, it requiresapplication-specific knowledge, including (1) identifica-

tion of application configurations, which form the basis of adaptation, (2) monitoring

of the execution environment, which provides context of the execution and events that

applications need adapt to,(3) measurement of performance metrics of interest, which

gives performance levels of the selected configurations in a profiling stage and perfor-

mance feedback at run time, and (4) ultimately selection of appropriate configurations

based on monitored execution scenarios, which is achieved in an application-specific

fashion. Although each of these steps could be done manually on a per application ba-

sis, they are better controlled at the system level without extensive programmer involve-

ment. Realizing this objective requires some application-independent way of enumerat-
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ing what the different configurations are as well as mechanisms for effecting transitions

among the various alternatives. We meet these requirements by abstracting the structure

of general tunable applications with language-level constructs, called the application

tunability interfacefirst introduced in [15, 16]. The tunability interface provides lan-

guage support to express availability of multiple execution paths for applications, and

provides means by which application progress can be monitored and influenced (by

switching to a different path), thereby alleviating the programmers’ burden of writing

tunable applications.

With these constructs, we identify

1. the implicit parameters and local variables that control the behavior of applica-

tions and promote them into application control structures that is exposed to the

outside systems;

2. the implicit parameters and local variables that reflect application performance,

with possible introduction of new variables that measures other performance met-

rics and expressions that specify how these new performance metrics should be

evaluated;

3. the software components whose behavior can be changed as nodes along the ex-

ecution path;

4. the points at which adaptation can happen, either inside a component or between

component boundaries;

5. application-specific actions to be taken as part of adaptation process;

6. the resources and external events this application need adapt to. The application

needs to export an standard interface to obtain the notification of these events

while the system need to keep monitoring of them.
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The language constructs for exporting these information could be divided into two

categories: application structuring constructs and application monitoring and control

constructs. Section 4.1 and Section 4.2 discuss these two kinds of constructs respec-

tively. Section 4.3 assumes that application source code is available and shows a con-

crete implementation of these constructs at source-code level. Section 4.4 shows how to

cope with binary applications where source code is unavailable, using code interception

and injection techniques so that new source code could be defined for binary functions.

4.1 Application Structuring Constructs

As described in Chapter 1 and Chapter 2, applications are assumed to be built up from

multiple components linked together using standard control-flow mechanisms, with ap-

plication configurations result in different behaviors for these components. These con-

figurations are exported using the tunability interface. Two kinds of constructs are used

to specify the different configurations of applications:

Control parameters provide the “knobs” by which component behavior can be in-

fluenced. Setting different values to the control parameters results in the component

following a different execution path. These parameters are usually local variables in-

side a program module; but are promoted as part of the tunability interface by giving

an external name and listing in thecontrol paramconstruct.

The local variables and control parameters exchange their values when the applica-

tion execution enters or leaves the corresponding module. The value of control parame-

ters could also be changed through an external notification (i.e., control messages) from

a system scheduler or another application instance. The change would be reflected in
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local variables at adaptation points specified by other constructs.

For parameters that only accept a certain values, the constraints such as a value

range could be specified. The system will generate filters when setting of new values

to prevent invalid executions.

Tunable components describes tunability of at component level. Each tunable compo-

nent is viewed as a container of modules of fixed behaviors (as described in Chapter 2),

with guard expressions selecting a particular behavior for execution. Tunable compo-

nents are linked together by inter-components control flow to set up the alternate exe-

cution paths. The abstract model of a tunable application is that of a family of DAGs

built up from individual tunable components.

Each tunable component is specified by acomponentconstruct, which describes the

control parameters affecting module execution, the environment (in terms of events and

resources) that are of interest to the component, and application-specific QoS metrics

that denote component output quality (see Section 4.2 for detail). As a result, a tunable

component is parameterized: its execution is determined by the control parameters and

its performance reflected by the quality metrics.

To identify different configurations of tunable components in the execution path,

tunable components can have names in which control parameters can be included. The

control parameters in the component name are evaluated as name-value pairs when the

component is instantiated at run time, serving as a handle for referring to a specific

configuration of the component.

A component is typically programmed in the form of a function. Correspondingly,

specifying component constructs can be either inside the function definitions or wrap

around function calls (where function definition is not available). We insert special

33



inline code at the boundary of components. When entering or leaving components,

various actions could be introduced by the inline code, including recording the con-

figuration and performance levels, query the resource conditions, or trigger adaptation.

The body of a component is left unspecified, and can include other constructs (e.g. con-

trol parameters), nested components, and original source code of the software module

for this component.

To include or exclude the entire component in the execution path, we introduce

guard expressions for each component. The guard expression are valid expressions in

the source language, however, contains only operations on control parameters specified

within this component.

Note that although it is the different execution paths and different behavior of com-

ponents on execution paths that provide flexibility in application execution, the tun-

ability interface relies on that this information are properly reflected in the different

settings of control parameters. As a result, each specific setting of control parameters

corresponds to one meaningful execution path. In this sense, the control parameter

constructs describe the different configurations of applications while components con-

structs act as containers of software modules and as units for controlling application

execution.

4.2 Application Monitoring and Control Constructs

Execution environment specifies the system entities (hosts and network links) on which

application components execute, as well as the external events the application is inter-

ested in. Each system entity in turn encapsulates several resources that affect applica-

tion behavior. For instance, a host is characterized by its CPU, memory, and network
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resources. The monitoring agents are designed to monitor the conditions of these re-

sources and propagate them to local and remote application instances. The monitoring

agent could either act as part of the application or reside on each host outside the ap-

plication. The objective of execution environment specification is to provide a standard

interface between the monitoring agents, applications, and other parts of system (such

as schedulers) to exchange information about execution context. Besides the physical

resources, the application may be interested in the occurrence of other events, such as

a change in the number of active users in the system. These events are also declared

as part of execution environment to support event notifications. One limitation of this

approach is that these events should be specifiable with simple data types such as an in-

teger or a string. It is assumed that some external agents monitor and notify the tunable

application about the occurrence of these events.

The notification of changes of environment parameters does not directly affect ap-

plication execution. Instead, they are treated as factors used to decide appropriate set-

tings of control parameters. As the result of a notification, the control parameters (and

correspondingly the execution path) may or may not be changed, depending on the

decision of resource schedulers (see Chapter 6 for details).

QoS metrics and evaluation expressions specify the component metrics of interest as

well as application-provided means of computing them. These QoS metrics (declared

asQoSparam) are viewed as measurements of application performance. In general,

performance metrics are application-dependent although some may be applicable to all

applications (such as the total time for processing the input data). Consequently, the

tunability interface should not need to know the semantics of these metrics. However,

it does require that they are comparable with minimum or maximum values and are
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simple data types, in order to optimize values of these metrics.

For many applications, performance metrics are mapped to local variables or com-

putable from values of local variables. For the latter case, the tunability interface

providesQoSmonitor constructs to compute these metrics. Typically, QoSmonitor

constructs are annotations nested within thecomponentconstructs, evaluating various

quality metrics associated with this component.

Transition functions specify the points at which adaptation can happen and encapsu-

late application-specific actions required upon a change in the component configuration

(e.g., updates to local variables and/or sending control messages to other components).

Compared to component constructs that allow adaptation at the entrance of a module,

transition functions enable adaptation inside a component.

Transition functions take two sets of control parameters as parameters, identify-

ing the current configuration and the configuration suggested by schedulers based on

the current conditions of execution environment. The transition function code could

examine these two sets and decide how to proceed; possibly overriding the system’s

decision. At the end of executing this code, the control parameters obtain the setting of

the new configuration. Usually adaptation decisions are made automatically by the sys-

tem (outside of applications), transition functions provides ways by which application

could constrain this decision.

4.3 Source-level Implementation of Tunability Interface

One way of realizing the tunability interface is as annotations to application source

code. These annotations can then be translated into the same language as the application
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and compiled together to generate tunable versions of applications. These annotation

constructs could be macro definitions in the source language, or elements and attributes

in Markup languages. In implementation, we use one of the Markup languages—

eXtensible Markup Language (XML) as a generic language for expressing tunabil-

ity interface. The annotations permit language-specific code in special places such as

guard expressions or transition functions in component constructs. Currently, these an-

notations only translate to C/C++, using a preprocessor implemented on top of a XML

parser. The control parameters, QoS metrics, and execution environment definitions are

converted into data structures in the source language (e.g., structure/class declarations

in C/C++), accessible to other inline annotation constructs (e.g., QoSmonitor). Differ-

ent execution paths are achieved by expanding the tunable component constructs into

conditional statements involving the associated guard expressions. Changes in com-

ponent configurations are detected by inline checking code. In addition to the tunable

versions of each component, the preprocessor also generatesmonitoringandsteering

agents that monitor resource availability and control application execution respectively

(see Chapter 6 for details). These agents are aware of the definition of control parame-

ters and QoS metrics, and can communicate with each other via control messages that

specifies the parameter names and new values.

The following explains how these constructs look like in XML and their correspond-

ing counterparts in C/C++ code.

Control parameters refer to local variables inside a component which are exposed by

giving external names and listing in thecontrol paramconstruct as control “knob”. For

example,

<control_param>
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<param type="int" localname="c" externname="compress" />

</control_param>

identifies a local variablec of type int and promotes it as a control parameter

compress . As a result, the control parameter structure would havecompress de-

fined,

typedef struct f

...

int compress;

...

g control param;

A global variable will be declared to represent the current setting of all of the con-

trol parameters; auxiliary functions are also defined, for instance, to support the copy,

serialization, and deserialization of the structure.

Components are wrappers of tunable modules with guard expressions that could be

turned on or off. The following construct identifies functioncompress() as a tunable

module:

void compress(...) f

<component name="module fcompress g" >

<condition> expr </condition>

other constructs ...

// original source code

</component>

g

describes a component with guard expressionexpr and a name comprising of

characters and a control parametercompress . Inside component constructs, other
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constructs could be defined such as control parameters, execution environment, QoS

metrics, and nested components. As a result, this construct will be translated into

void compress(...) f

if (expr) f

begin component("module fcompress g");

code for processing other constructs

// original source code

end component("module fcompress g");

g

g

The functionbegin component() andend component() is defined to record

the values of control parameters, resource parameters, and QoS metrics, and to trigger

adaptation if necessary. The latter will give the control parameters proper values for

executing this module.

Execution environment specifies the context of application execution. We identify a

host where an application instance executes on by a name (e.g. name of the application

instance), IP address and TCP port the instance listens to for external notifications. The

host is characterized by the constituent resources such as CPU, memory, and network

resources that available to the instance on this host.

The following construct specifies a hostclient with addresslocalhost in the

execution environment, listening to portvSys.port+1 for external notifications. One

of its resource parameters is the network condition (as specified bynet ). In addition,

it also listens to the notification of an event namedusers whose meaning is unknown

to the application (for instance, it might specify the number of users on the local host).

<resource param>
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<host name="client" address="localhost" port="vSys.port+1" />

<hostresc type="double" name="net" host="client" />

<event type="int" name="users" />

</resource param>

These declarations are translated into structure definitions that hold the value for

these parameters and the corresponding code for listening to notifications. For CPU,

memory and network resources, the corresponding monitoring agents are generated

(see chapter 6 for details).

QoS metrics define performance metrics of interest to application components. For

instance,

<QoS_param>

<qos type="int" externname="resolution" localname="l" dir="inc" />

<qos type="double" externname="response time" dir="dec" />

</QoS_param>

defines two performance metrics:resolution maps to the local variablel ,

with a larger value indicating a better performance (as specified byinc ); and re-

sponse time would be evaluated in QoSmonitor constructs, with a smaller value

indicating a better performance (as specified bydec ).

This construct translates to corresponding definitions in global data structure (as for

control parameters) and synchronization code to map between the local variables and

the data structure. As a result, the value ofresolution synchronizes with the local

variablel at the end of the component execution. However, additional,QoSmonitor

constructs (not shown) are required to set values forresponse time . The code in

these constructs are directly embedded into application source code; synchronization

code is also generated before and after the QoSmonitor constructs.
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Transition functions specify tuning points inside a component as well as application-

specific actions needed when switching from one configuration to another. The actions

are code written in the same source language as the rest of the application. For instance,

the construct

<transition from="oldctl" to="newctl">

application-specific code ...

</transition>

defines a transition function with two sets of control parametersoldctl andnewctl,

where thenewctl identifies the configuration suggested by the system based on the

current resource conditions.

In addition to processing the constructs described above, the preprocessor also gen-

erates file templates for application profiles and user preferences for application execu-

tion. These serve as input to both the virtual execution environment (see Chapter 5 for

details) and the external resource schedulers. These configuration files identify the ap-

plication components, and their control parameters, execution environments, and QoS

metrics. Availability of this information allows an external source, either a driver pro-

gram or a system-level scheduler, to flexibly interact with a running application for

performing a variety of tasks ranging from passive measurement (e.g., recording the

performance achieved by a particular configuration under a given resource condition)

to more active control (e.g., changing the behavior of application components).

4.4 Binary-level Realization of Tunability Interface

So far in this chapter we have shown how to annotate application source code to export

its tunability interface. However, we observe that some applications have sufficient
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information available at the binary level to support adaptation. For these applications,

we do not need to have access to their source code, or even recompile and relink them

to get tunable versions.

The basic approach for realizing the tunability interface at binary level is to intercept

application function calls at run time and control their behavior by changing function

arguments or return values. A few function interception tools are available on popular

operating systems such as Windows NT and Linux. For instance, the standard binary

format on Windows NT permits finding the function address for a particular symbol

(i.e., function name). Windows NT also allows a process to access the memory im-

age of another and to inject a thread into the latter. Together, these allow rewriting

the binary code of that function. In the original binary code of the function, the first

several instructions could be changed to jump to the new function definition that are dy-

namically injected into application address space (by loading the corresponding DLLs).

This is how Detours [37] works, a tool we use to intercept and reinterpret function calls.

Similar interception is also possible on other operating systems (e.g., Linux), and for

Java applications (in Byte Code format by simply reloading class definitions).

Binary realization of the tunability interface assumes some application-specific knowl-

edge besides the binary code itself. Similar to the source-level interface, we also need

to identify control parameters, tunable components, QoS metrics, execution environ-

ment parameters, and transition functions. Here, the control parameters can only map

to formal parameters of the functions, instead of any local variables. In addition, we

need to decide which function calls to intercept to inject these constructs into applica-

tions. For instance, if a transition function needs to be inserted into a particular point of

a component, we require a function invocation at that point. We redefine that function
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and insert the calling of transition functions in the beginning of the new function.

As the result of the interception, a new library is authored and annotated using the

tunability interface. It can be preprocessed using a similar parser as that at the source-

code level to generate a shared library (e.g., DLL) that is to be loaded into application

at run time. This library contains all the necessary code for monitoring and adapting

application execution. As a prototype, we injected a DLL into Active Visualization

application, intercepting and redefining some C/C++ functions. For instance, the entry

point WinMain() is intercepted to initialize the tunability data structures. The pro-

totype which combines the original binary with the injected code achieves the same

adaptation as allowed by the source-level annotation as what we report in Chapter 8.

Besides exposing tunability of an application, this approach also allows injection

of alternate components into applications that do not originally possess them. For in-

stance, if an application supports a single compress method LZW, using the following

prototype,

void compress(char indata [], int insize,

char outdata[], int outsize);

We could rename this implementation to beoriginal compress and redefine it

to introduce another compression method Bzip2 and control the selection based on a

control parametercompress , as following,

void compress(char indata [], int insize,

char outdata[], int outsize) f

int c = control.compress;

if (c) Bzip2(indata, insize, outdata, outsize);

else original compress(indata, insize, outdata, outsize);

g
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With the new definition, the application can use alternate compress methods chosen by

a resource scheduler to optimize its performance.

To generalize this approach, we need language constructs to specify function in-

terception and combine with the source-level annotation constructs. In fact, deciding

which function to intercept requires further information, such as a brief control flow

graph to specify the relation of function invocations and structure of applications. Iden-

tifying them inherently requires human effort. However, since the tunability interface

is independent of applications, some tools can be built to facilitate the generation of

adaptation code.

Compared with source-level annotation, binary-level realization is limited in that

application binaries have less information and provides fewer mechanisms that can be

taken advantage of. First, binary-level realization only allows code modification at the

granularity of function calls while annotation at source code level permits changes to

arbitrary code segments. Second, control parameters and QoS metrics can only map

to function arguments while they can map to arbitrary local parameters at source level.

Third, type information is most likely unavailable and thus certain operations are im-

possible. For example, without debugging information present in the executable, it is

difficult to determine the type ofthis pointer of a C++ member function and obtain

access to its member variables because this information is in general unavailable. Of

course, the availability of advanced language features such as reflection in Java and

other object-oriented languages somewhat alleviates this difficulty.
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4.5 Summary

Different application configurations can be exposed through the tunability interface,

which specifies components whose behavior can be controlled, control parameters that

decide the execution path, QoS metrics that reflect application performance, and tran-

sition functions that implement application-specific actions when switching between

application configurations. These specifications provide sufficient information to gen-

erate run-time components that permit application adaptation. We showed how to real-

ize this interface at the source-code level using XML-based annotations and at binary

level using a prototype based on function interception techniques for shrink-wrapped

applications binaries.
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Chapter 5

Virtual Execution Environment

In the model described in Chapter 2, application adaptation is the selection of an ap-

propriate configuration among various configurations based on resource conditions and

user requirements. Before this can happen, we need to be able to model the behavior

of configurations and resource conditions they are most appropriate for. This chapter

describes a novel profiling approach, relying on the construction of a virtual execution

environment to control various resource conditions available to applications.

Explicit specifications of application tunability enables development of a model of

behavior for each of application configurations, expressed as a mapping from control

parameters and resource conditions (application input can be viewed as an additional

parameter in the execution context) to application-specific quality metrics. The existing

approaches for obtaining this mapping can be divided into two categories: analytical

and profiling-based approach.

Analytical approaches attempt to model application performance by analyzing the

complexity of algorithms it uses and come up with a formula that predicts application

behavior on a certain system, under a certain set of resource conditions. However, the
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difficulty with this approach lies in the complicated nature of both current-day execu-

tion platforms and large-scale applications. Current physical systems contain several

levels of memory hierarchy from on-chip caches to disk storage or even network file

system, use aggressive pipelining and out-of-order execution mechanisms, provide de-

vices with varying characteristics of devices such as network cards, and require com-

plex interactions with operating systems. At the same time, current applications are

built with complicated control flow and data flow, even with remote function calls to

other physical systems or with multiple instances running at the same time with varying

degree of synchronization among them. Both of these factors significantly restrict the

general applicability of analytical approaches.

On the other hand, profiling-based approaches treat applications as black boxes, re-

lying upon measurement of their executions to build performance models. However, a

shortcoming of this approach is that obtaining a full performance model of the applica-

tion requires measurements across a broad range of resource conditions. In principle it

is possible to obtain these profiles by executing each configuration in different physical

distributed environments corresponding to every possible run-time resource availability

situation. However, practical considerations rule against this approach because of the

difficulty of configuring such a large variety of distributed systems.

Instead, we obtain application profiles using a technique for creatingvirtual execu-

tion environments[12]. These environments run on top of a static distributed system,

and can be configured to accurately emulate a variety of resource availability scenarios.

Our implementation of these environments relies on standard mechanisms available in

most current-day operating systems and a novel technique called API interception, and

supports the constrained execution of unmodified applications.
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This chapter first describes the construction of the virtual execution environment in

Section 5.1 and studies its use for profiling application behavior in Section 5.2.

5.1 Construction of Virtual Execution Environment

We implement a virtual execution environment by effectively creating a “sandbox”

around an application. This sandbox constrains application utilization of system re-

sources such as the CPU, memory, disk, and network.

Existing approaches for enforcing qualitative and quantitative restrictions on re-

source usage rely on kernel support [40, 49], binary modification [62], or active inter-

ception of applications’ interactions with operating systems (OSes) [1, 23, 27]. The

kernel approaches are general-purpose but require extensive modifications to OS struc-

ture, limiting their applicability for expressing flexible resource control policies. The

remainder of the approaches rely on deciding for each application interaction with the

underlying system whether or not to permit this interaction to proceed; consequently,

they provide qualitative restrictions (such as whether or not a file-reading operation

should be allowed), but are unable to handle most kinds of quantitative restrictions,

particularly since usage of some resources (e.g., the CPU) does not require explicit

application requests.

We devise a user-level sandboxing approach for enforcing quantitative restrictions

on application’s resource usage. Our approach instruments (using tools such as Me-

diating Connectors [1] and Detours [37]) application binaries, activelymonitorsthe

application’s interactions with the underlying system, and proactivelycontrolling them

to enforce the desired behavior. Our strategy recognizes that application access to sys-

tem resources can be modeled as a sequence of requests spread out over time. These
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requests can be either implicit such as for a physical memory page, or explicit such as

for disk access (however, those disk operations incurred by paging are also implicit).

This observation provides two alternatives for constraining resource utilization over a

time window: either control the resources available to the application at the point of

the request or control the time interval between resource requests. In both cases and

for all kinds of resources, the specific control is influenced by the extent to which the

application has exceeded or fallen behind aprogress metric. The latter represents an

estimate of the resource consumption of applications.

For this approach, the primary challenge lies in accurately estimating the progress

metric and effecting necessary control on resource requests with acceptable overhead.

It might appear that appropriate monitoring and control would require extensive kernel

involvement, restricting their applicability. Fortunately, most modern OSes provide a

core set of user-level mechanisms that can be used to construct the required support.

Presence offine-grained timersandmonitoring infrastructuressuch as the Windows NT

Performance Counters and the UNIX/proc filesystem provides needed information

for building accurate progress models. Similarly, fine-grained control can be effected

using standard OS mechanisms such asdebugger processes, priority-based scheduling,

andpage-based memory protection.

5.1.1 General Strategy

The goal of controlling resource consumption can be two-fold: to simply prevent an ap-

plication from overusing system resources and starving other applications, or to provide

a soft guarantee and weighted fair sharing of resources to the controlled applications.

The latter goal can create, for each application, a virtual execution environment that
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simulates a physical machine with the prescribed resource limitations. However, meet-

ing this goal requires that extra resources cannot be given to the constrained application

even if available. In the following, we describe how our strategy can be used to control

application consumption of three representative resources: CPU, memory, and network.

CPU resources

For CPU resources, the quantitative restriction is to ensure that the application receives

a stable, predictable processor share. From the application’s perspective, it should ap-

pear as if it were executing on a virtual processor of the equivalent speed.

Constraining CPU usage of an application utilizes the general strategy described

earlier. The application is sandboxed using a monitor process that either starts the

application or attaches to it at run time. The monitor process periodically samples

the underlying performance monitoring infrastructure to estimate a progress metric.

In this case, progress can be defined as the portion of its CPU requirement that has

been satisfied over a period of time. This metric can be calculated as the ratio of the

allocated CPU time to the total time this application has been ready for execution in

this period. However, although most OSes provide the former information, they do not

yield much information on the latter. This is because few OS monitoring infrastructures

distinguish (in what gets recorded) between time periods where the process is waiting

for a system event and where it is ready waiting for another process to yield CPU. To

model the virtual processor behavior of an application with wait times (see Figure 5.1

for a depiction of the desired behavior), we use a heuristic to estimate the total time

the application is in a wait state. The heuristic periodically checks the process state,

and assumes that the process has been in the same state for the entire time since the
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previous check.
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Figure 5.1: Desired effects on application execution time (x axis) under a resource-constrained

sandbox that limits CPU share (y axis) to 50% when the application contains (a) no wait states,

and (b) wait states. In the latter case, the sandbox should only cause the ready periods to get

stretched out.

The actual CPU share allocated to the application is controlled by periodically de-

termining whether the granted CPU share exceeds or falls behind the desired threshold.

The guiding principle is that if other applications take up excessive CPU at the ex-

pense of the sandboxed application, the monitor compensates by giving the application

a higher share of the CPU than what has been requested. However, if the application’s

CPU usage exceeds the prescribed processor share, the monitor would reduce its CPU

quantum for a while, until the average utilization drops down to the requested level.

While the application is waiting for a system event (e.g., arrival of a network message),

it is waiting for resources other than the CPU. Consequently, the time in a waiting

state is not included in estimating the CPU share and the application would not get

compensated for being in a wait state. For this scheme to be effective, the lifetime of

the application needs to be larger than the period between sampling points where the

progress metric is recomputed.
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Memory resources

The quantitative restriction of interest here is the amount of physical memory an ap-

plication can use. The sandbox would ensure that physical memory allocated to the

application does not exceed a prescribed threshold. Monitoring the amount of physical

memory allocated to an application is straightforward. The monitoring infrastructure

on all modern OSes provides this information in the form of the process working set

(resident set) size. The progress metric is the application’s peak working set size over

a period. No control is necessary when the progress is less than the threshold.

However, it is more involved to control the application behavior in case the OS

allocates more physical pages than the threshold. The problem is that these resources

are allocated implicitly subjecting to the OS memory management policies. The basic

idea is to have the monitor act as a user-level pager on top of the OS-level pager, relying

on an OS-specific protocol for voluntarily relinquishing the surplus physical memory

pages allocated to the application (see Figure 5.2). Also, unlike the CPU case where

periodic monitoring and control of application progress is required, here the monitoring

and control can adapt itself to application behavior. The latter is required only if the

application physical memory usage exceeds the prescribed threshold, which in turn can

be detected by exploiting OS support for user-level protection fault handlers.

Network resources

For network resources, the quantitative restriction refers to the sending or receiving

bandwidth available to the application on its network connections. Unlike CPU and

memory resources, application usage of network resources involves an explicit API

request. This permits the monitoring code injected into the application to keep track of
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Figure 5.2: A user-level strategy for controlling application physical memory usage. The appli-

cation has normal access to pages in its working set (1). When it accesses a non-resident page

(2), a page fault is triggered (3). The user-level pager adds this page to the working set (4), and

removes extra pages when working set size is above the threshold (5).

the progress (i.e., amount of data sent/received over a time window) and estimate the

bandwidth available to the application. Control is straightforward: if the application is

seen to exceed its bandwidth threshold, it can be made compliant by just stretching out

the data transmission or reception over a longer time period (e.g., by using fine-grained

sleeps). The amount of delay is calculated so that the bandwidth at the end-point is not

above the prescribed threshold. For clarity of description, we restrict our attention to

synchronous communication operations and also assume that the data transmission rate
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in the network is not the bottleneck. The approach needs to be refined slightly to handle

situations where communication operations are asynchronous.

Integrated and implicit resource usage

Applications do not access system resources in an isolated fashion. For instance, ac-

cessing a non-resident virtual memory page results in the triggering of an interrupt

handler, transfer of a page from disk, accompanied with optional swapping out of a

resident page and possible enlargement of the process working set size. To correctly

handle such coupled accesses to system resources, we need to take into account effects

such as increased CPU usage due to OS activity triggered on behalf of the application

and additional disk usage because of reduced availability of physical memory pages.

Our sandboxing strategy factors in the above effects by appropriately defining the

progress metric to reflect bothexplicitandimplicit resource usage. The overall resource

usage is forced to adhere to the requested limits by controlling the explicit requests.

For example, even though an application’s disk bandwidth usage due to paging is not

controllable at the user level, its aggregate disk bandwidth usage can be reduced by

controlling explicit disk requests such as file read and write. As a last resort, quanti-

tative rate-based limits on resource usage can be enforced by controlling allocation of

CPU resources to the application, therefore affecting its usage of all other resources.

5.1.2 Implementation on Windows NT

This section discusses NT-specific issues and demonstrates the control of CPU, mem-

ory, and network resources with experiments. The implementation and performance

results below refer to NT 4.0, service pack 5, running on Pentium II 450 MHz ma-
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chines.

Constraining use of CPU resources

Monitoring progress The CPU monitor is attached as a callback routine of the fine-

grainedmultimedia timers, and is triggered every 10ms with high accuracy using a

technique introduced in [29]. Note that the scheduling quantum on NT is at least 20ms

for the workstation installation and 120ms for the server installation. The monitor ob-

tains an application’s CPU usage in terms of kernel time and user time through system

API calls. The kernel time refers to the time the application is executing in kernel

mode. However, this statistic does not account for all OS activity performed on behalf

of the application. For instance, the overhead of memory paging is not included in per-

process statistics, instead being recorded in the per-processor statistic. As a heuristic,

we estimate the application’s portion of this non-accounted kernel time by considering

the ratio of the number of application events triggering such kernel activity (e.g., page

faults) to the overall system-wide number of such events.

As described in Section 5.1.1, the monitor estimates process wait time within a time

window by checking the process state and accumulating the time slots at which the pro-

cess is found waiting. Although NT allows examining process state via its performance

counter infrastructure, this incurs high overhead (on the order of milliseconds). Instead,

we employ a heuristic that infers process state based on thread contexts. We observe

that a thread can be in a wait state only when it is executing a function inside the kernel.

Recognizing that if the thread is not blocked it is unlikely to stay at the same place in

kernel code, the heuristic checks the instruction pointer register to see whether a trap

instruction (int 2Eh) has just been executed, and whether any general registers have
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changed since the last check. If the same context is seen, it regards the thread as being

in a wait state, with the process regarded as waiting if all of its threads are waiting.

Controlling progress Based on the progress metric, the controlling code decides whether

or not to schedule the process in the next time slot. Although this decision could be im-

plemented using OS support for suspending and resuming threads (which we use in

our Linux implementation), the latter incurs high overhead. Consequently, we adopt a

different strategy that relies on fine-grained adjustment of application process priorities

to achieve the same result.

Our approach requires four priority classes (see Figure 5.3), two of which encode

whether CPU resource are available or unavailable to the application. The monitor runs

at the highest priority (level 4), and a special compute-bound “hog” process runs at

a very low priority level 2 and executes only when no other normal applications are

active. An application process not making sufficient progress is boosted to priority

level 3, where it preempts the hog process and occupies the CPU. A process that has

exceeded its share is lowered to priority level 1, allowing other processes (possibly

running within their own sandboxes) or in their absence, the hog, to use the CPU. Note

that this scheme allows multiple sandboxes to coexist on the same host.

Effectiveness of the sandbox Our experiments show that this implementation enables

stable control of CPU resources in the 1% to 97% range. When the requested share

is above 97%, the measured allocation includes perturbations from background load

(the performance monitor, system processes, and the sandboxing code). The interfer-

ence from sandboxing code consists of the monitor overhead and bursty allocation of
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4 Monitor Monitor

3 Application

2 Hog Hog

1 Application

Figure 5.3: Controlling application CPU availability by changing process priorities.

resources to the hog process over long runs (this is an NT feature for avoiding starva-

tion). The overhead of adjusting the priority is negligible. To measure the overall costs

of running an application within a sandbox, we compare the wall-clock execution time

of a synthetic CPU-intensive application running within and outside of a sandbox. On

average, this application took 35.5 seconds to finish when running alone, and took 36.0

seconds when running inside a sandbox prescribing a CPU share of 100%, indicating

an overhead of about 1.5%.

Figure 5.4(a) is a snapshot of the performance monitor display showing three sand-

boxed applications running on the same host. They start at timest1, t2, andt3, request-

ing 10%, 30%, and 50% of the CPU share, respectively. With the total CPU request at

90%, all three applications receive a steady CPU share until timet4, when we deliber-

ately perturb the allocation by dragging a DoS window. This causes the total available

CPU to decrease drastically (because of the kernel activity), and a sharp decrease in the

immediate CPU shares available to each application. However, this drop is compen-

sated with additional CPU resources once the system reacquires CPU resources (end of

window movement). These results indicate that the sandbox can support accurate and

stable CPU sharing with resilient compensation.
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Figure 5.4: (a) Weighted CPU sharing for multiple applications. (b) Constraining CPU share

for applications with wait states.

Figure 5.4(b) shows the execution of an application that sleeps periodically, without

sandboxing (left) and with a sandboxed CPU share of 50% (right). The working time

with the sandbox is twice the amount on the left, corresponding to the halved CPU

resource. More importantly, the sleep (wait) time is kept the same, consistent with

Figure 5.1 and verifying the effectiveness of our state-checking heuristic.
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Constraining use of memory resources

Monitoring progress An API call, GetProcessMemoryInfo , provides informa-

tion about the resident memory of a process. Unlike the CPU case, the sampling of

this information can be adapted to the rate at which the application consumes memory

resources. To estimate the latter, we integrate the sampling with the controlling scheme

described below.

Controlling progress As described in Section 5.1.1, controlling progress of memory

resources requires the sandboxing code to relinquish surplus memory pages to the OS.

To do this, we rely on a convention in NT: pages whose protection attributes are marked

NoAccess are collected by the swapper.

The same core OS mechanism, user-level protection fault handlers, is used to de-

cide both (a)whena page must be relinquished, and (b)whichpage this must be. Our

scheme intercepts the memory allocation APIs (e.g.,VirtualAlloc andHeapAl-

loc ) to build up its own representation of the process working set. When the allocated

pages exceed the desired working set size, the extra pages are markedNoAccess .

When such a page is accessed, a protection fault is triggered: the sandbox catches this

fault and changes page protection toReadWrite . Note that this might enlarge the

working set of the process, in which case a FIFO policy is used to evict a page from

the (sandbox-maintained view of the) working set. The protection fault handler also

provides a natural place for sampling the actual working set size, since a process’s

consumption of memory is reflected by the number of faults it incurs.

A few additional points need clarification. The implementation is simplified by not

evicting pages containing executable code, so this limits the least amount of memory
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that can be constrained. Eviction at the sandbox level may or may not cause the page to

be written to disk although these pages are excluded from the process working set; when

the system has large amounts of free memory, NT maintains some pages in a transition

state delaying writing them to disk. Note that with our design, if the application is

running within its memory limits, it will not suffer from any runtime overhead (except

that of intercepting API calls). Beyond that point, the overhead are a function of process

virtual memory locality behavior.

Effectiveness of the sandbox Our experiments show that, on a 450 MHz Pentium II ma-

chine with 128MB memory, this sandbox implementation can effectively control actual

physical memory usage from 1.5MB up to around 100MB. The lower bound marks the

minimal memory consumption when the application is loaded, including that by sys-

tem DLLs. To compare, a “Hello, world” program consumes about 500KB memory

and one that creates a TCP socket consumes 1MB memory. The upper bound approxi-

mates the maximum amount of memory an application can normally use in our system.

The memory overhead includes 64KB for the code injected into application address

space and 12 bytes for keeping track of each page in the working set. The overhead of

intercepting a memory allocation call is measured as 1.07�s when the specified mem-

ory constraints are above the working set size (thus no page fault is incurred). When the

constraints are below the required working set size, process memory locality behavior

determines the overhead. However, because of our CPU accounting scheme, only this

process’s execution time is affected.

Figure 5.5(a) shows the requested and measured physical memory allocations for

an application that has an initial working set size of 1.5MB and allocates an additional

20MB of memory. The sandbox is configured to limit available memory to various sizes
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Figure 5.5: (a) Controlling the amount of physical memory utilized by an application. (b)

Execution time as size of working set varies.

ranging from 2MB to 21MB. As the figure shows, the measured memory allocation of

the application (read from the NT Performance Monitor) is virtually identical to what

was requested.

Figure 5.5(b) demonstrates the impact of the memory sandbox on application ex-

ecution time. The application under study has a memory access pattern that produces

page faults linearly proportional to the non-resident portion of its data set. In this case,

the application starts off with a working set size of 1.5MB and allocates an additional

8MB. The sandbox enforces physical memory constraints between 5MB and 12MB.

As the figure shows, the execution time behavior of the application can be divided into

three regions with different slopes. When the memory constraint is more than 9.5MB,

all of the accessed data can be loaded into physical memory and there are no page faults.

When the memory constraint is below 9.5MB, total execution time increases linearly

as the non-resident size increases, until the constraints reaches 6.25MB. In this region,

page faults occur as expected but the process pages are not written to disk. When avail-

able memory is below 6.25MB, we observe heavy disk activity. In this segment, the
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execution time also varies approximately linearly, with the slope determined by disk

access characteristics. These experiments show that our sandboxing scheme preserves

the application page faulting behavior.

Constraining available network bandwidth

Monitoring and controlling progress As described in Section 5.1.1, we intercept socket

APIs (accept, connect, send, andrecv) to monitor and control available network band-

width.

Effectiveness of the sandbox The effectiveness of the sandbox is evaluated on a pair

of Pentium II (450 MHz) machines connected to a 10/100 auto-sensing Fast Ethernet

hub. The application consists of a server and one or more clients in a simple ping-

pong communication pattern exchanging 4KB-sized messages, which achieves a peak

bandwidth of 11 MBps when running outside the sandbox. Our experiments show that

the sandbox can effectively constrain bandwidth from 1 Bps to about 11 MBps with an

error of less than 2%. Figure 5.6 shows how accurately the sandbox controls network

resources for constraints in the range 0.5 KBps to 8 MBps.

5.1.3 Differences in Linux implementation

Linux provides support very similar to Windows NT for instrumenting application bina-

ries, and monitoring and controlling resource consumption. For instance, library func-

tions such as the sockets and memory allocation APIs, can be intercepted by preloading

shared libraries. The mechanisms and performance of network bandwidth control are

identical across the Windows NT and Linux platforms. However, there are small dif-

ferences in how CPU and memory resources are constrained under Linux.
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Figure 5.6: Comparison of application observed network bandwidth and the ideal values under

the control of sandbox.

Controlling CPU resource Adjusting scheduling priorities requires superuser privilege

on Linux. Therefore, we use a scheme based on thread suspend/resume: the sandbox

sends an application a SIGSTOP signal to suspend and a SIGCONT signal to resume

its execution.

Controlling memory resource Linux provides asetrlimit API for limiting the

maximum amount of physical memory a process can use. However, current versions

of the kernel (e.g., v2.2.12) do not enforce this constraint. Consequently, we adopt a

scheme similar to the one on NT. However, unlike on NT, where an implicit protocol

(usingNoAccess protection bits) between the OS and the application permits the for-

mer to collect pages not required by the latter, no such protocol exists on Linux. The

page protection bits can be set on Linux, but the kernel swapper (kswapd ) does not

check the page attributes to decide which page must be swapped out.
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We get around this problem by handling the swapping ourselves. First, we inter-

cept memory allocation functions (e.g.,malloc ) to make sure that only the requested

amount of physical memory is kept valid; all other memory pages are protected to be

unavailable for access. When a page fault happens due to invalid access, we pick an-

other page (in FIFO order) from the resident set (maintained by the sandboxing code),

save its contents to our own swap file, and take it out of the resident set using themun-

mapmechanism in Linux. Subsequently, an invalid access exception triggers the saved

contents to be mapped back to the original virtual address.

5.2 Obtaining Application Performance Profiles

Since our design of the sandboxing tool enables the control of application resource us-

age as if only the prescribed amount is available to their execution, we can use it to

emulate different resource scenarios. This usage requires that the resource levels be ac-

curately controlled and that application behavior on this virtual execution environment

approximate executions on real distributed environments.

Figure 5.7 demonstrates the overheads and accuracy of the virtual execution en-

vironment. Figure 5.7(a) compares the execution time of a tight loop on the virtual

execution environment (realized on a Pentium II 450MHz machine) and the expected

execution time (normalized with the requested share) as CPU share varies from 5% to

100%. The application’s execution time under the virtual execution environment is very

close to what is expected (except when 100% CPU share is requested) indicating that

the environment incurs low overhead. Figure 5.7(b) shows the accuracy of the virtual

execution environment by comparing execution times for the active visualization appli-

cation on different real client machines (a Pentium Pro 200MHz, a Pentium II 333MHz,
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Figure 5.7: (a) Overheads and accuracy of the virtual execution environment with a tight loop.

(b) Comparison of application execution times using the virtual execution environment and

physical machines for the active visualization application.

and a Pentium II 450MHz) with that obtained under the virtual environment when the

latter is configured to provide a CPU share based on the WinBench 99 v1.1 [22] scores

for the different machines. WinBench is a Windows 98/NT benchmark that measures

the aggregate impact of CPU speed and memory configuration. The execution times

under the virtual environment are within 3% of that on the physical machines. Note

that similar accuracy cannot be obtained by simply scaling the execution time in pro-

portion to the CPU shares based on the WinBench benchmark. This estimate, shown by

the “Linear scale” bar, turns out to have a big difference from real executions (primarily

because of idle time behavior), indicating the necessity to measure application behavior

under different resource conditions.

Given such sandbox environments that accurately emulate differing resource avail-

ability, obtaining profile-based application behavior is straightforward. A driver pro-

gram executes each configuration repeatedly setting up the virtual execution environ-
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ment to sample different resource conditions. A separate tool analyzes output quality

measures to determine configurations and regions of the resource space that require

additional samples. The output of this modeling step is aperformance databasethat

records information about a maximal subset of the configurations representing the re-

source profile of this application, which can informally be defined as configurations

that outperform other configurations under at least one resource situation. Additionally,

configurations that exhibit similar execution behavior can be merged (with only one of

them being stored) in the performance database. These measurements are interpolated

to get performance curves that summarize configuration performance.

The performance database for an application contains its resource profiles, indi-

cating the application performance (in terms of QoS metrics) for various application

configurations (in terms of the setting of control parameters) under various resource

conditions. Ideally, this mapping should be expressed in an analytic model. How-

ever, it may not be easy to fit the data to exact expressions. The performance database

currently takes a simplified view in storing all the discrete profiling records and per-

forming simple linear interpolation to get estimates of application performance under

unspecified resource conditions.

Currently, the performance database is stored as a list of records, as shown in Fig-

ure 5.8. Each record contains a list of name value pairs, with each name being either a

control parameter, a resource property, or a QoS metric.

As an extension, the performance database could also include the measured vari-

ance, analytical expressions that approximate the database, or other analysis results

such as the calculation of bottleneck resources for a specific scenario.

The profiling process for obtaining the performance database could be exhaustive
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control.fovea=80 resc.cpu=0.4 qos.response time=780 ...

control.fovea=80 resc.cpu=0.9 qos.response time=400 ...

control.fovea=320 resc.cpu=0.4 qos.response time=1500 ...

control.fovea=320 resc.cpu=0.9 qos.response time=750 ...

Figure 5.8: A simple form of performance database.

or selective. The former experiments with various kinds of resource conditions and

their combinations in a uniform fashion. The latter is more selective and can analyze

the resource ranges that needs more experiments and avoid profiling that do not gener-

ate useful information. We currently do not have the sensitivity analysis tool and use

exhaustive profiling to get the performance database for applications in Chapter 8 and

Chapter 9.

5.3 Summary

To model performance of various configurations of tunable applications, we have de-

signed a virtual execution environment that controls resource availability to applications

and implemented it on Windows NT and Linux. We use driver programs to enumerate

application configurations and control resource conditions to profile application behav-

iors under various resource conditions. The results are stored in a performance database

which serves information for selecting appropriate configurations at run time.
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Chapter 6

Run-time Adaptation System

At run time, an appropriate application configuration is chosen and dynamically up-

dated as resource availability changes to satisfy user preference constraints (i.e.,QoS

constraints). Such configuration and adaptation are realized by interactions between

three components as in Figure 6.1: (1) anapplication-specific monitoring agentthat

monitors resource characteristics of interest to the application as well as application

progress, (2) aresource schedulerthat correlates observed resource characteristics and

user preferences with performance models stored in the performance database, and (3)

a steering agentthat provides a control message interface and performs the actual re-

configuration.

The steering agent inside the application understands the name and data type of the

tunability parameters and acts as a bridge between the monitoring agents (including

external ones), the resource scheduler and the application. It asks the resource sched-

uler to find a matching configuration when obtains a changed resource condition, in

terms of the setting of control parameters for the selected configuration and expected

performance level (i.e., QoS metrics). It sets the control parameters and resource con-

68



Resource
parameters

QoS
metrics

Control
parameters

Steering
agent

Monitoring
agent

Execution platform

external event

Resource
scheduler

control

QoS

Application

Figure 6.1: Run-time components and tunability data structures.

ditions accordingly, and records the expected values of QoS metrics. When application

entering a tunable component or encountering a tuning point in a component, control

parameters are mapped to the local variables they correspond to, thereby controlling the

behavior of execution. At the end of a component execution, the values of QoS metrics

are recorded by the generated inline code, which could be potentially combined with

expected QoS levels to get a dynamic feedback about application execution (currently

we are not performing the combination).

6.1 Monitoring Agent

Themonitoring agent, running periodically as an application module, continually ob-

serves application progresses and estimates the fraction of resources that are available

for use by the application. The monitoring agent relies on a system database for in-

formation about maximum capacities of system resources (e.g., CPU speed, physical

69



memory pages, and network bandwidth). It observes the shortfall between the level

of resources requested by the application and what it actually obtained: comparing al-

lotted CPU time with the wall clock time (factoring in periods where the application

is waiting), comparing physical memory usage with virtual memory size, and keeping

track of aggregate network traffic over time. The results are estimates about resource

availability.

The monitoring agent uses the same techniques as in the virtual execution envi-

ronment described in Chapter 5. Our experience shows that this data collection adds

negligible overhead to application execution even when performed in very fine-grained

time slots (e.g., 100ms). The monitoring agent retrieves the CPU usage information

from the operating system, using debugging APIs (e.g.,GetProcessTimes ) on NT

(or /proc filesystem or Linux). It takes into account the history of obtained CPU

usage information of certain period and the CPU speed to compute an estimated CPU

availability. Figure 6.2 shows the CPU shares the monitoring agent observes as that is

changed by the virtual execution environment from 90% to 40% at time 30 seconds.

Although the CPU share is initially assumed to be 100% by the monitoring agent, it

correctly estimates a 90% level after the first several seconds. This period could be re-

duced with the help of an external agent informing resource availability at startup time.

When the CPU share drops to 40% at time 30 seconds, the monitoring agent realizes the

change immediately, even though it takes several seconds to obtain the 40% level esti-

mate. The length of this period depends on the size of the history window from which

an average is computed. The larger the windows size, the more stable the estimate is;

however, the slower the monitoring agent realizes the changes in resource availability.

For memory resource, the monitoring agent uses the OS mechanisms to obtain the
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Figure 6.2: Monitoring agent’s observed CPU share as the actual share is changed from 90% to

40% at time 30 seconds.

usage of physical memory (i.e., the size of working set): on NT via performance moni-

toring APIGetProcessMemoryInfo , on Linux via the/proc filesystem. It inter-

cepts memory allocation/deallocation calls (e.g.,malloc ) to keep track of the size of

virtual memory the application requests. The amount of physical memory available to

this application is estimated to be the size of the working set when the virtual memory

size is above the physical memory size and the latter ceases to increase for a while.

For network resources, the monitoring agent intercepts networking API calls such

assend andrecv , and measures the amount of data transmission as well as the time

spent on these operations. It accumulates this information to estimate the available

network bandwidth. Figure 6.3 shows the observed network bandwidth as the actual

bandwidth is changed by the virtual execution environment from 500 KBps to 50 KBps

at time 30 seconds, assuming the monitoring agent is informed of the exact resource

level in the beginning. The monitoring agent is able to estimate correctly at both of the
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Figure 6.3: Monitoring agent’s observed network bandwidth as the actual bandwidth is changed

from 500 KBps to 50 KBps at time 30 seconds.

two resource levels. Again, its responsiveness to resource changes depends on the size

of the history window maintained for calculating an average.

It is possible that monitoring of these resources is done outside the applications.

We put it inside application to get a better estimate of the resource levels available to

a specific application (since it can run on a virtual execution environment), instead of

resource availability to the entire host.

Resource availability is measured in a specialized thread by the monitoring agent,

asynchronous to an application’s execution. In contrast, the measurement of application

progress by theQoS monitor code(in terms of QoS metrics) is inline, synchronous

to application execution and is usually application-dependent. The latter can also be

thought of as part of the monitoring process since it can also result in events to which

the application can adapt. In addition, the application is open to receiving external

notifications through which an outside monitoring entity could inform the change of
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additional conditions. This allows plugin of arbitrary monitoring tools through the use

of the control message interface.

6.2 Steering Agent

The steering agentis responsible for switching application configurations, executing

any clean-up code as appropriate. In addition, the steering agent sends and receives

control messages, which specify new values for control parameters, the resource con-

ditions under which these new settings are valid, and the expected performance level

(in terms of QoS metrics). Upon receiving them, the steering agent sets up the new

values for control parameters, which would be suggested to the application at the en-

trance of a component or a transition function, as specified by the tunability interface

(see Chapter 4).

In implementation, the steering agent runs as a separate thread in application. The

control messages are realized by reliable UDP messages. The steering agent under-

stands these messages because the parameters are described in the tunability interface.

After these control messages are received, it sets the control parameters to the new

values and resets the conditions that trigger performance exception.

6.3 Resource Scheduler

The resource scheduler takes as input the QoS constraints, the performance database,

and the resource conditions, and computes an appropriate application configuration to

select for execution. Furthermore, different scheduling policies could be implemented

to optimize user satisfaction, application performance, or system resource utilization.
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Schedulers can be divided into two categories: schedulers that only concern the per-

formance of a single application and schedulers that aim at optimizing a global metric.

Both of these schedulers could be plugged into our framework provided they follow

the same interface: receiving of control messages about the execution conditions and

user preferences and sending of control messages describing a new configuration. The

control messages are a list of setting of tunability parameters (i.e., control parameters,

resource parameters, and QoS metrics) where the setting of each parameter contains

its name, a value, and possibly an value range within which the new configuration is

considered stable (such as for ranges of resource parameters).

As an input to resource scheduler, each user preference constraint is expressed as

the value ranges on a subset of output quality metrics and is accompanied with an ob-

jective function to be optimized. For simplicity, we assume a relatively restricted form

of this function: maximizing or minimizing a single quality metric. These constraints

when considered together with measured resource characteristics, restrict the suitable

set of application configurations. Of these, the resource scheduler picks the one that

best satisfies the objective function. Multiple user preference constraints can be spec-

ified. The system examines them in decreasing order of preference; in the case that

one request cannot be satisfied due to inadequate resources, the system attempts fulfill

the next preferred constraint. When dispatching multiple application executions with

the corresponding user preference requests, the scheduler could prioritize preferences

from different users, implementing its own policy in selecting the performance levels

for each request.

QoS constraints in Figure 6.4 shows a user preference constraint, specified using

QoS metricsresponse time , transmission time , andimage level that are
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defined in the tunability interface. It requires thatresponse time to be in the range

of 0 to 1000,execution time to be in the range of 0 to 100000, andimage level

to be in the range of 3 to 5. It also asks to maximize thetransmission time metric.

[low] qos.response_time = 1000

[high] qos.response_time = 0

[low] qos.transmission_time = 100000

[high] qos.transmission_time = 0

[low] qos.image_level = 3

[high] qos.image_level = 5

[maxi] qos.transmission_time

Figure 6.4: Specifying user preferences in QoS constraints.

A further extension of QoS constraint format could allow users to specify their own

adaptation policy. For instance, introduction of symbolic expressions of QoS metrics

permits users to specify more complicated objective functions or constraints. Although

constraining application performance metrics might be a reasonable request for some

end-users, it might not be practical for ordinary users. For these users, a potential

extension can provide several classes of default settings of QoS constraints and assign

the users to one of these classes.

The schedulers for the Active Visualization and Junction Detection applications

used in Chapter 8 and Chapter 9 are manually written, with the first concerning the per-

formance of a single application and the second aiming at optimizing a global metric.

The latter handles multiple applications of the same kind (i.e., same parameters in the

tunability interface).
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A generic scheduler for tunable applications should satisfy the following form: It

takes as inputs three kinds of information for each application (1) a template generated

for this application specifying its parameters in the tunability interface, including con-

trol parameters, environment parameters, and QoS metrics; (2) a performance database

generated in the profiling stage describing application performance, in terms of the

mapping from control parameters, environment parameters, to QoS metrics; (3) a user

preference for executing the application in the form of QoS constraints. The template

information helps resource scheduler interpret the latter two kinds of information. For

instance, it tells whether the increment of a specific QoS metric means improvement or

degradation of application performance. In addition, a generic scheduler must export

an interface similar to steering agents, responsible for receiving request from steer-

ing agents and replying with a certain configuration (i.e., a row in the performance

database) it chooses based on some scheduling policy. This interface allows sched-

ulers to cope with adaptation decision of different applications because the semantics

of tunability parameters are hidden from the schedulers.

6.4 Summary

In our framework, application adaptation is performed by run-time components: a mon-

itoring agent, a resource scheduler, and a steering agent, interacting with each other

through control messages that exchange information about parameters exposed in the

tunability interface. The monitoring agent is responsible for obtaining resource condi-

tions, and the resource scheduler for making adaptation decisions. The steering agent

acts between the application, resource scheduler, and monitoring agent, responsible for

realization the adaptation decisions. This infrastructure can be applied to many appli-
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cations that is originally oblivious of adaptation to achieve a better performance or user

satisfaction.
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Chapter 7

Benefits of Tunable Applications

Application tunability provides flexibility in application execution that allows a re-

source scheduler to find the configuration best matching the current system conditions.

As a result, we expect both the performance of the application and the resource utiliza-

tion of the system to be improved. To understand the performance impact of tunability,

we study a particular system and characterize the benefits of tunability using simula-

tion. Although tunability allows complicated tradeoffs among many types of resources

in a dynamically changing environment, for simplicity, we limit the resource type to be

only processors in a relatively static scenario with a fixed number of processors, reflect-

ing processor allocation in Calypso system [3]. The only dynamic factor is the arrival

of applications requesting for processor resources. We compare the system utilization

achieved with tunable parallel applications against that with non-tunable applications.

We first propose a simple greedy heuristic for scheduling tunable parallel applications

with predictability requirements, and then use a parameterizable task system to system-

atically quantify the benefits and shortcomings of tunability.

78



7.1 Scheduling Formulation

Without tunability, the underlying scheduling problem we address is one of dynam-

ically scheduling parallel real-time jobs (i.e, applications) in a system with a fixed

amount of homogeneous processing resources. We restrict our attention to jobs which

can be represented as a chain of tasks where each task has an associated deadline. A

task is a schedulable unit, corresponding to a component in parallel applications. Each

task is assumed to be non-preemptible and should not be scheduled at all if the dead-

line would be missed. A job should not be scheduled if one of its tasks misses the

deadline. Here, tunability represents the flexibility in the number of processors that

can be allocated to each task as well as the maximum number of processors the task

can utilize (i.e., degree of concurrency). We study tunability benefits for both non-

malleable (in Section 7.3) and malleable (in Section 7.4) executions of these tasks.

Non-malleable tasks, characteristic of most current-day parallel applications written in

a message-passing style using systems such as PVM [26] or MPI [30], require a fixed

resource “shape” in terms of the number of processors required over a time period. In

contrast, malleable tasks such as in Calypso [3] programs, can execute on any number

of processors up to their degree of concurrency. In both cases, we assume that informa-

tion about all tasks of the job is available upon job arrival. The primary objective of this

scheduling problem is to maximize the number of on-time jobs. A secondary objective

is to maximize system utilization.

With tunability, the only change to the scheduling problem is that a job is now

represented by an OR task graph instead of a chain. The multiple paths in the task graph

represent various alternate executions of a tunable program. For uniformity, we assume

that all paths through an OR graph have been enumerated, so a tunable application is
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represented by multiple task chains. For the purpose of this study, we assume that each

chain requires the same total amount of resources and achieves the same output quality.

Note that in practice, task chains of a tunable application are likely to have different

overall resource requirements and output qualities: the issue then is to maximize the

achieved output quality.

As with most non-trivial scheduling problems, all of the above formulations are NP-

hard. Even if the original problem is not, adding tunability would probably turn it into.

For instance, feasibility test of deadline-constrained sequential jobs on a uniprocessor is

polynomial [20]; however, the same test for tunable jobs can be reduced from Knapsack

problem and therefore is NP-hard. We next describe a simple greedy heuristic for the

above NP-hard scheduling problem.

A Simple Greedy Heuristic The heuristic allocates resources to jobs using a first fit

policy. For a tunable job with multiple schedulable configurations, the heuristic finds

among all of them the one that so far most efficiently uses the system. The heuristic

keeps track of availablemaximal holesin the processor-time 2D space: each hole is

represented by a triple(m; tb; te) (denoting thatm processors are available from begin-

ning timetb until the end timete), and is maximal if it is not contained within any other

hole. A job isschedulableif all the tasks on its task chain (any one of the task chains for

a tunable job) can be scheduled into available holes while meeting the task deadlines.

Ties between schedulable configurations are broken in favor of chains which maximize

system utilization (over a time window defined by the job’s release time and scheduled

finish time) and require fewer total resources for some prefix of their tasks. Under the

assumptions of our task model, the heuristic finds the job configuration which achieves

the earliest finish time.

80



x

t

xα

t/α

d2d1r

x

t

xα

t/α

d2d1r

Figure 7.1: A parameterizable tunable job. The job parametersx, �, and laxity, permit the

convenient simulation of a range of job shapes and deadline characteristics.

7.2 A Parameterizable Task System

To systematically explore the space of application behaviors, we consider a task system

that consists of a parameterizable tunable job shown in Figure 7.1. The job parameters

enable the convenient simulation of a range of job shapes and deadline characteristics.

The job consists of two chains, each with two tasks. The two configurations simply

transpose the positions of the two tasks. Each task requires the same total amount of

resources but with different shapes. One task asks forx processors for timet, whereas

the other task requestsx� processors for timet=� amount of time. The value of� is

chosen in the interval(0; 1] such that bothx andx� are integers. Modifyingx and�

allows the simulation of a variety of task shapes. The task deadlines are set in terms

of another parameter, thelaxity of the job, expressed as the ratio of the slack time in

the time period from the release time to the deadline. For a job released at timer, the

deadline of the first task is set tod1 = r+max(t; t=�)=(1� laxity); the deadline of the

second task is set tod2 = r+ (t+ t=�)=(1� laxity). Since a task can begin execution

as soon as its immediate predecessor completes, the task deadline denotes the time by

81



which the task and all its predecessors must finish. The laxity parameter allows the

systematic modeling of different amounts of slack time, and hence the constraints that

exist for “fitting” a job into the system.

With the above parameterizable job, we construct three task systems: the first task

system is tunable, consisting of both job configurations, while the other two systems are

non-tunable, containing one configuration apiece. Left profile of Figure 7.1 is referred

to as shape 1 whereas the right one referred to as shape 2. Jobs in each task system arrive

according to the Poison distribution. We quantify the benefits of tunability in terms of

two metrics—system utilizationandjob throughput—measuring the performance of the

tunable task system as compared to the non-tunable task systems as a function of four

parameters:mean arrival interval, laxity, thenumber of processorsin the system, and

� which controls the job shape. All experiments reported in this section assumex=16

processors,t=25 time units, and 10,000 job arrivals.

7.3 Tunability Benefits for Non-malleable Tasks

We first study the benefit of tunability for jobs consisting of tasks that require a fixed

number of processors over a period of time. Figure 7.2 shows the system utilization

(left) and throughput (right) as the mean arrival interval, the laxity, the number of pro-

cessors, and the job shape are varied one parameter at a time, keeping the others fixed.

Sensitivity to inter-arrival time In Figure 7.2 (a), the arrival interval varies from 10

to 85 units (note thatt=25), with the other parameters fixed as follows:number of

processors=16, laxity=0.4, and�=0.5. When the arrival interval is small, the system

is overloaded and only a small portion of the tasks are admitted in all three systems.
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Figure 7.2: Performance impact of tunability for non-malleable tasks as average arrival interval,

laxity, number of processors in the system, and job shapes are varied, in terms of throughput

(left) and system utilization (right).

Tunability has negligible performance impact, since the system is already being fully

utilized. When the arrival interval is very high, the system is underloaded and all three

task systems can admit all the jobs. Tunability does not yield much benefit since re-

sources are abundant compared to requests. It is in the middle range of arrival intervals

however, that the tunable system achieves the largest improvement in both utilization

and throughput: at its peak, it can admit 3000 more jobs and achieve 30% better system

utilization. The tunable system can decide which of the task configurations to use based

on resource availability, resulting an efficient utilization of resources.

Sensitivity to laxity In Figure 7.2 (b), the laxity varies from 0.05 (a slack time of 5%)

to 0.95 (a slack time of 20 times the processing time), with the other parameters fixed

as follows:number of processors=16,�=0.5,mean arrival interval=50 time units. If

there are no timeliness requirements (i.e., laxity is 1), all jobs would be admitted and
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the resources are fully utilized. In the presence of timeliness requirements, some jobs

would be rejected because their deadlines cannot be met. When laxity is small, the job

deadlines are tight and because there is little processor-time space left to fulfill resource

requirements, the tunable system yields only a small improvement. However, this im-

provement goes up with an increase in laxity, decreasing to zero only when there is

enough space to admit even non-tunable tasks. For shape 2, this happens when the lax-

ity is above 60%. In contrast, shape 1 requires a larger number of processors for its first

task, preventing it from a good packing (due to the greedy nature of the heuristic) even

when deadlines are loose. The latter situation demonstrates the performance handicap

of an inflexible (i.e., non-tunable) application.

Sensitivity to the number of processors Figure 7.2 (c) shows the benefits of tunabil-

ity when the number of processors in the system are increased from 16 to 64 (recall

that x=16), with the other parameters fixed as follows:�=0.5, mean arrival inter-

val=15 time units, andlaxity=0.25. Throughput increases as more processors become

available. However, for some values, the non-tunable systems fail to gain from more

processors, resulting from a drop in resource utilization. In these cases, the packing of

job shapes does not fit the resource capacity well and the extra resources are simply

wasted. The tunable system diminishes the penalty of this effect, yielding robust per-

formance. When the number of processors grows significantly larger than individual

task concurrency, even non-tunable jobs are able to utilize the available resources well;

consequently, the benefits from tunability decrease.

Sensitivity to the job shape Figure 7.2 (d) shows the benefits of tunability as a function

of the job shape, determined by�. The other parameters are kept fixed as follows:

85



number of processors=16, mean arrival interval=40, andlaxity=0.5. The utilization

achieved by a particular job shape depends upon how well the shape can be packed

given the number of processors in the system. Consequently, even when two job shapes

have the same total resource requirement, they can yield very different overall system

utilization because one of the shapes might be a better fit. We see that shape 1 performs

far worse than the other two when� is small. Due to the suboptimal nature of the

heuristic, a lot of resources are wasted for shape 1 jobs, proportional to the value of

�. When� is not too large (up to 0.625), tunability improves performance achieving

better packing than either of the individual shapes. For values of� that produce similar

task resource profiles, as expected, tunability yields few benefit.

7.4 Tunability Benefits for Malleable Tasks

We conducted the same set of experiments for tasks that can be executed in a malleable

fashion. These experiments, whose results are shown in Figure 7.3, differ from the

non-malleable execution model only in that, instead of requiring a fixed task shape,

they permit the task to change its shape to any area-preserving rectangle with a height

less than its degree of concurrency. When allocating resources to a malleable task, the

heuristic is extended to try various configurations of the task, starting from the highest

number of processors the task can use (which corresponds to the shortest execution

time).

Comparing the results in Figure 7.3 and Figure 7.2, we find that both the tunable sys-

tem and the non-tunable shape 2 job system perform similarly for both non-malleable

and malleable models. What is noticeable however, is that the performance of the non-

tunable shape 1 job system improves by a significant amount. Malleability ensures
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Figure 7.3: Performance impact of tunability for malleable tasks as mean arrival interval, laxity,

number of processors in the system, and job shapes are varied, in terms of throughput (left) and

system utilization (right).

that these jobs achieve better packing as compared to their non-malleable versions,

improving system utilization. Based upon the results shown in Figure 7.3, the same

conclusion can be drawn regarding the overall benefits of tunability for malleable tasks

as for non-malleable tasks, although the magnitude of the benefit might be smaller. In

some situations, the sub-optimality of the heuristic prevents the tunable system from

performing as well as one of the non-tunable systems. For example, in Figure 7.3 (d)

when�=0.375, shape 1 packs slightly better than the tunable system, although the dif-

ference is negligible.

The reduced magnitude of improvement from tunability for malleable tasks might

suggest that support for malleable tasks alone might be sufficient to improve overall

system utilization. While this is certainly true for a range of parameter values, tun-

ability complements malleability over a large range. Figures 7.4 (a) and 7.4 (b) show
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the increased throughput attained by the tunable job system when compared with the

non-tunable shape 1 and shape 2 job systems for non-malleable and malleable tasks

respectively as the mean arrival interval and laxity parameters are varied. The other

parameters are kept fixed as follows:number of processors=16 and�=0.5. We find that

for a large range of parameter values, the performance benefits from tunabilityaugment

those resulting from malleable task execution. This expected behavior is explained

by the observation that tunability denotes flexibility in resource utilization both at the

individual task level as well as at the global application level. In contrast, although

malleability might allow a particular task to execute in a flexible fashion, it does not

permit this flexibility to extend to the entire application. Thus, tunability complements

malleability, exposing additional information about application resource requirements

to the underlying resource management system.

Our results show that for both non-malleable and malleable task executions, tunabil-

ity yields substantial performance advantages, with respect to both system utilization

and throughput. These improvements are most pronounced in the mid-portion of each

parameter value range: when the system is moderately loaded, when the deadlines are

not extremely loose, when the number of processors available is not significantly larger

than the concurrency degree of a parallel task, and when the job shapes are not too sim-

ilar. These system characteristics describe the operating point of most practical parallel

systems, attesting to the significant performance potential of application tunability.

7.5 Summary

In this chapter, we studied the benefits of tunability by simulating the resource man-

agement in a parallel computing environment. The simulation shows that tunability
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Figure 7.4: Performance impact of tunability in non-malleable model (a) and in malleable model

(b), as job arrival interval and laxity are varied.

can greatly improve both system resource utilization and the number of jobs the sys-

tem can finish. In a distributed environment, tunability can be more powerful due to

more type of resources and dynamic changes of these resource conditions. A resource
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scheduler would have larger flexibility in matching application configurations to differ-

ent resource conditions. In such a scenario, the benefits of application tunability also

depend the amount of tradeoffs among various configurations and how much tradeoff

end-users permit in the specification of QoS constraints. A larger tradeoff and more

flexibility in fulfilling user preference makes tunability yield more benefits for both

system and applications.
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Chapter 8

Case Study: Active Visualization

This application is developed by the Active Visualization project at New York Univer-

sity. It has inherent flexibility in the way it can be executed. We take this application

and expose this flexibility using our framework; and make it capable of adapting to

different resource conditions. In this chapter, we will first describe the structure of this

application and its tunability opportunities; show how to expose its various configu-

rations using the tunability interface; generate profiles for its configurations using the

virtual execution environment; and evaluate this framework by studying how it permits

automatic adaptation to changes in resource availability.

8.1 Application Structure

The Active Visualization application [10, 11] is a client-server image visualization ap-

plication for interactively viewing, at the client side, large images stored in the server.

Figure 8.1 shows the overall structure of the client and server processes while Figure 8.2

shows a simplified version of the client-side source code. The application uses multi-
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process user
input

request fovea

receive fovea

decompress

update image

check-if-more

Client side

receive
request

retrieve data
compress

send fovea

Server side

Figure 8.1: Structure of Active Visualization Application. The client requests a foveal region of

the specific resolution level from the server, decompresses the data, and updates the local image

on display.

resolution and progressive transmission techniques to improve performance. First, im-

ages (not compressed) are stored at the server as wavelet coefficients [10], enabling

the construction of images at different levels of resolution. Second, the server employs

progressive transmission to improve response time. It transmits an area of the image

that corresponds to the user’s fovea (i.e., focus of interest), starting from the coarsest

resolution and progressing up to the user-preferred resolution.

Given a user request for a certain foveal region of which the center is indicated by

variablesx andy as in Figure 8.2 (corresponding to the position of the mouse) and the

size by the variabler , the client sends a request to the server asking the corresponding

region of a certain image resolution level as indicated by variablel . The server gets the

request, compresses the data with some compression method configured by the client
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establish connection();

notify server compression type(c);

do f

check for user interaction(&x, &y, &r, f);

request fovea(x, y, r, l);

receive fovea(&data);

decompress(c, &data);

update image(x, y, r, l, data);

g while (check if more(r, l));

close connection();

Figure 8.2: Structure of the original client side program of Active Visualization.

(as variablec ), and sends the data back. The client receives the data, decompresses

it accordingly, and updates the image. If the user has not moved the position of the

mouse by then, the client automatically generates another request for a larger foveal

region, expanding the fovea size by the value in variablef . This ensures eventual

transmission of the entire image at the highest required resolution.

8.2 Tunability of Active Visualization

This application permits adaptation by associating different values with local variables

such as preferred resolution levell , size increment of the foveal regionf , and choice of

the compression methodc . The resultant executions trade off resource requirements for

application performance: a low resolution implies less resource requirements; different
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compression methods require different CPU resources and achieves different compres-

sion ratio; and a smaller fovea size leads to a quicker response for getting the foveal

region, but a longer time to transmit the whole image. In other words, the choice of

resolution level trades off the image quality against the overall resource requirements;

the choice of compression methods trades off CPU resource requirement against net-

work resource requirement; the choice of fovea size trades off responsiveness against

the total image transmission time. The setting of these control “knobs” defines differ-

ent application configurations, which may be suitable for different execution scenarios.

These knobs are naturally present in the original application program except the support

of different compression methods. For compression methods, it turns out that original

programmers experimented with several compression algorithms and finally decided

the one that suits low network bandwidth, the execution scenario the application was

designed for, without removing the rest of the algorithms.

For this application, the notion of tunability captures the fact that none of the exe-

cution scheme is optimal in all resource scenarios and that different schemes can trade

off resource requirements and output quality. These tradeoffs enables the run-time se-

lection of an appropriate execution scheme based on environmental conditions and user

preference. In other words, tunability provides flexibility, for this application, in both

the way application executes and the way users can express their preferences.

8.3 Application Annotation

Application tunability of Active Visualization is exported using the tunability interface.

Although the application has both a server-side and a client-side component, we restrict

our attention to the client side, treating the server side as a black-box whose behavior
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is entirely determined by the messages sent to it from the client.

Annotation for identifying configurations

The different kinds of configurations are specified using a control parameter construct

and a component construct as in Figure 8.3 and Figure 8.4

Control parameters The annotation<control param> in Figure 8.3 has three<param>

elements, identifying local variablesl , f , andc as control parameters with the cor-

responding namelevel , fovea , andcompress respectively. Control parameters

determine the configuration (i.e., execution path) taken by the application and the be-

havior along this path.

Tunable components As in Figure 8.4, the entire data transmission module is treated

as a single component namedtransmit flevel gffovea gfcompress g. The con-

trol parameters in the component name are evaluated as name-value pairs when the

component construct is instantiated at run time, and serve as a handle for referring to

a specific component configuration. Inside these components is the annotated source

code, and the specification of tunability parameters including control parameters, re-

source parameters, and QoS metrics.

Annotation for monitoring and controlling execution

For the purpose of monitoring and control application execution, we expose two ap-

plication instances (i.e., client and server) and resource parameters of the execution

environment, declare the performance metrics (i.e., QoS metrics), specify how to eval-

uate them, and define a transition function invoked when switching between different
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Tunability Parameter Declaration

< control param>

< param type="int" externname="level" localname="l" />

< param type="int" externname="fovea" localname="f" />

< param type="int" externname="compress" localname="c" />

< /control param>

< resourceparam>

< host name="client" address="localhost" local="yes"

port="vSys.port+1" />

< hostresc type="double" name="cpu" host="client" />

< hostresc type="double" name="net" host="client" />

< host name="server" addressvar="vSys.chosenServer"

port="vSys.port+1" />

< /resourceparam>

< QoS param>

< qos type="double" localname="qos transmit"

externname="transmit time" dir="dec" />

< qos type="double" localname="qos response"

externname="response time" dir="dec" />

< qos type="int" localname="qos resolution"

externname="resolution" dir = "inc" />

< /QoS param>

Figure 8.3: Declaration of tunability parameters using annotation, including control parameters,

resource parameters, and QoS metrics.
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Tunability Annotation of Active Visualization
< component name="transmit flevel gffovea gfcompress g" >

Tunability parameter declaration, e.g., control parameters, ...

< QoS monitor>

double qos transmit = 0, qos response = 0;

int qos resolution = l, nrounds = 0;

< /QoS monitor>

establish connection(); notify server compression type(c); do f

< QoS monitor> double t0 = clock(); < /QoS monitor>

check for user interaction(&x, &y, &r, f);

request fovea(x, y, r, l);

receive fovea(&data);

decompress(c, &data);

update image(x, y, r, l, data);
< QoS monitor>

double t1 = clock(); nrounds ++;

qos transmit = qos transmit + (t1 - t0);

qos response = qos transmit/nrounds;

qos resolution = l;

< /QoS monitor>

< transition from="oldctl" to="newctl">

if (oldctl.compress != newctl.compress)

notify("server", "compress", (void *)newctl.compress);

< /transition>

g while (check if more(r, l));

< /component>

Figure 8.4: Exporting component tunability interface for the client slide of Active Visualization.
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configurations.

Execution environment The execution environment (as<resource param> in Fig-

ure 8.3) specifies two hosts (through<host>) on which the application executes, a

client (running onlocalhost ) and aserver as well as their addresses and port

numbers control messages should send to. The addresses and ports can be expressions

valid at the point of annotation. The client host encapsulates CPU and network re-

sources (specified by<hostresc>) of interest to the application. Here, resources on

server host are not explicitly included, although it is also possible to monitor and adapt

to the changes of the server-side conditions.

QoS metrics The <QoS metric> construct in Figure 8.3 specifies (through<qos>

elements) three metrics of interest, including the total data transmission time (i.e.,

transmit time ) that maps to local variableqos transmit , average response

time (i.e.,response time ) that maps to local variableqos response , and image

resolution level (i.e.,resolution ) that maps to local variableqos resolution .

The performance level increases with a smallertransmit time , response time

as indicated bydir="dec" , or a biggerresolution as indicated bydir="inc" .

Evaluation of QoS metrics As shown in Figure 8.4, updates to QoS metrics are handled

by code segments contained within<QoS monitor> constructs. The code inside these

constructs are language-specific. Here we use C/C++ code declaring local variables

that maps to QoS metrics and assign them proper values. For instance, wall clocks are

taken in the beginning and the end of each round of transmission to get accumulated

time as transmission time.
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Transition functions Annotation in Figure 8.4 specifies one<transition> construct,

containing application-specific actions for switching between configurations. It also

presents point at which adaptation can happen inside a component. Here, the vari-

ablenewctl represents the new configuration suggested by the run-time system while

oldctl represents the old configuration. For this application, reconfiguration may

require notifying the server when the compression method is to be changed. Here,

notify is a function provides as an API that can be used in annotation for communi-

cating between different application instances, and the run-time agents. After executing

the transition function, the control parameters get the value of thenewctl .

Interface for adaptation at binary level

Since we already know the control flow of Active Visualization and prototype and se-

mantics of its function calls, we use function interception technique to turn the orig-

inal binary into a tunable version. Although an automated implementation would re-

quire support for specifying which function to reinterpret. We decide to manually au-

thor the new functions forcheck for user interaction , decompress and

check if more . Inside these new functions, the original functions are invoked.

These new functions present source code so that annotation constructs could be used to

provide a similar tunability interface.

For instance, we redefined functioncheck for user interaction as in Fig-

ure 8.5 and add<control param> and<QoS monitor> constructs as in Figure 8.6

(other constructs are not shown). These constructs identifiesf as a control parameter

and starts the clock for measuring QoS metrics (e.g., transmission time). Similarly, the

new functioncheck if more is annotated with the another<QoS monitor> con-
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Newcheck for user interaction function

void check for user interaction(int* px, int* py, int* pr, int f) f

original check for user interaction function(px, py, pr, f);

g

Figure 8.5: New definition for the intercepted function

Annotation for the new check for user interaction function

void check for user interaction(int* px, int* py, int* pr, int f) f

< control param>

< param type="int" externname="fovea" localname="f" />

< /control param>

< QoS monitor> t0 = clock(); < /QoS monitor>

original check for user interaction function(px, py, pr, f);

g

Figure 8.6: Annotation of intercepted functions.

struct and a<transition> construct to evaluate QoS metrics and triggers adaptation (if

necessary) at the end of each data request-reply round.
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8.4 Application Profile

A driver program repeatedly executes different configurations of the Active Visualiza-

tion application in the virtual execution environment, obtaining a mapping from the

control parameter values to the output qualities for a wide range of resource conditions.

Figures 8.7 and 8.8 discusses a small subset of these measurements and the result-

ing mappings. The measurements reported here are obtained on a Pentium 450MHz

machine and rely upon manual determination of appropriate resource settings for the

virtual execution environment. The latter could be assisted by a sensitivity analysis tool

that suggests the configuration and resource ranges requiring further profiling.
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Figure 8.7: Image transmission time (a) and response time (b), for different fovea sizes as CPU

share varies.

Figure 8.7 shows the image transmission time (i.e.,transmit time ) and average

response time (i.e.,response time ) of user interactions for different fovea sizes as

the client-side CPU share varies in the virtual execution environment (this corresponds

to running the application on client machines with different CPU capabilities). In gen-

eral, an increase in CPU resources reduces both transmission time and response time.
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Figure 8.8: Image transmission time, for (a) different compression methods as network band-

width varies, and for (b) images of different resolutions as CPU share varies.

However, they show opposite trends (seen in the order of the curves) with the increase

of fovea size: the larger the fovea size, the smaller the total transmission time, but the

larger the response time.

Figure 8.8(a) shows image transmission time for different compression methods as

the network bandwidth varies (keeping other resources such as CPU at a fixed level).

The two curves in the figure correspond to two different compression methods in the

application: compression B (Bzip2) trades off additional CPU resources to achieve a

better compression ratio than compression A (LZW). The crossover between the two

curves indicates that there exist resource conditions where one compression method

should be preferred over another. Compression B outperforms compression A when

the network bandwidth is low because less data is transmitted. However compression

A performs better when the network bandwidth is high because the CPU becomes the

bottleneck then.

Figure 8.8(b) shows the transmission time for images of different resolutions as the
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CPU resource varies (keeping other resources at a fixed level). In general, additional

CPU resources lead to a shorter transmission time. However, transmission time can

also be lowered by degrading the image resolution.

Although we use exhaustive profiling to learn the behavior of all of the configura-

tions, it is not necessary to store all the profiling result in the performance database.

Only those configurations that outperform other configurations under some circum-

stances are recorded in the database, and for only those resource points that are nec-

essary for a close interpolation. Since obtaining application behavior requires a large

number of profilings , it is desirable to automate this process by providing tools that

can pinpoint which resource conditions and configurations need further investigation.

A difficulty we experienced with the profiling stage is the abnormal execution of

applications. When we run applications in an resource conditions they are not tested

(or even not designed for), it is likely to experience abnormal executions such as crash

due to the bugs in application program. We are currently not attempting to solve this

problem.

8.5 Evaluation of the Framework

Because of the interactive nature of the application, the output quality metrics of most

interest to the user are image resolution and timeliness, although their relative impor-

tance varies from situation to situation. To capture a wide range of usage scenarios,

we describe three experiments below, demonstrating that our framework permits suc-

cessful automatic adaptation to different patterns of changes in resource availability.

Figure 8.9, Figure 8.10 and Figure 8.11 show the quality metrics achieved by the adapt-

able form of the application and contrast it with the non-adaptive versions. In each
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plot, the thick line represents the performance of the adaptive execution, which in each

experiment switches from one configuration to another configuration. To better under-

stand why this happens, we execute the application with the fixed configurations ever

taken by the adaptive execution and plot as the two thinner lines in each figure.

The experiments emulate the client downloading ten images from the server. The

experiments are conducted on two Pentium II 450MHz machines connected by 100

Mbps Ethernet. Here, we focus on adaptation to variations in CPU and network re-

sources, and on only the client side of the application since the latter is more likely to

be concerned with output quality metrics such as image resolution and response time.

To test whether the application can adapt to run-time variations in resource conditions,

we vary one of the resources (either CPU share or network bandwidth) after a fixed

time in the experiment.

Experiment 1: Adapting compression method to network conditions Figure 8.9 shows

the adaptation of the Active Visualization application in response to changes in the

network bandwidth available between the server and the client. The user preference is

to minimize image transmission time.

The network bandwidth is varied as follows: at the start of the experiment, the

virtual execution environment provides a bandwidth of 500 KBps, which is changed to

50 KBps after 25 seconds. The resource scheduler responds to this pattern of resource

availability as below:

� At startup, it configures the application to use compression method A (LZW). As

Figure 8.8(a) shows, for a bandwidth of 500 KBps, compression method A (LZW)

outperforms compression method B (Bzip2). This choice allows the application to

download four images before the available bandwidth changes at time 25 seconds.
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Figure 8.9: Adapting Active Visualization to changes in network conditions by switching com-

pression methods.

� The change in bandwidth is detected by the application monitoring agent before

the end of the fifth image transmission, which notifies the resource scheduler. The

latter (based on the correlation in performance database) suggests the application

to switch to compression method B (Bzip2), which the application-specific transi-

tion function realizes by sending the corresponding control message to the server

(since compression is performed at the server side). As Figure 8.8(a) shows, com-

pression method B yields better performance than compression method A when

the bandwidth is 50 KBps. The switch takes effect in the middle of transmitting

the fifth image, which takes 16 seconds to complete. Subsequent image transmis-

sions use compression B and complete in 24 seconds apiece.

Experiment 2: Adapting image resolution to CPU conditions Figure 8.10 shows the

application adaptation in response to changes in CPU conditions. In this case, the user

preference requires that image transmission time not exceed 10 seconds and that image
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resolution be maximized. For simplicity, we constrain image resolution to be one of

two levels (referred to hereafter as level 3 and level 4).
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Figure 8.10: Adapting Active Visualization to changes in CPU conditions by degrading image

resolution.

The CPU conditions at the client are varied as follows: at startup, the CPU share

available to the client is set at90%, which changes to40% at time 30 seconds. The

resource scheduler responds to this pattern of resource availability by starting off with

a configuration that sets the image resolution to be level 4, but then degrades image

quality to level 3 when resource availability drops. These choices are consistent with

the performance profile shown in Figure 8.8(b). When the CPU share is90%, resolution

level 4 results in image transmission times within the user-requested range (i.e., less

than 10 seconds). However, with a CPU share of40%, image transmission times at

this resolution level would violate user constraints. Degrading the resolution to level 3

permits each image to be transmitted in about 4 seconds, satisfying user requirements.
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Experiment 3: Adapting fovea size to CPU conditions Figures 8.11 show application

adaptation by changing fovea size in response to changes in CPU conditions. In this

case, the user preference is to minimize image transmission time while keeping average

response time of user interactions below 1 second.
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Figure 8.11: Adapting Active Visualization to changes in CPU conditions by changing fovea

size.

The CPU conditions at the client are varied as follows: initially, the CPU share

is set to90%, but decreases to40% at time 35 seconds. The two figures show re-

sponse time (for retrieving the fovea) and transmission time (for retrieving the entire

image) of executions under this resource availability pattern. The resource scheduler

initially selects a fovea size of 320 (pixels), and switching down to a fovea size of 80

due the change in resource availability. These selections can be understood with the

performance profiles shown in Figure 8.7. Initially, a fovea size of 320 satisfies the

user preference for response times being below 1 second, while achieving the shortest

image transmission time. However, when the amount of available CPU share drops,

this configuration results in response times of about 1.4 seconds, which falls outside

108



the user-requested range. Consequently, the scheduler switches to a fovea size of 80,

ensuring response times of below 1 second for the remainder of the experiment. Com-

pared with the configuration that satisfies this constraint (i.e., selecting fovea size 80),

the adaptive execution achieves much shorter image transmission time.

We must note that although this experiment shows perfect adherence to the user

preference, there are other issues that need to be addressed in a real execution scenario.

In practice, application may experience constant irregular resource changes rather than

shifting between stable levels, may have a very large performance database and com-

plex user preferences. In this experiment, we take a simplified view, assuming stable

resource levels and a simple version of performance database that gives the resource

scheduler limited search space. This constraint yields a straightforward adaptation de-

cision: Even though the CPU monitor takes several seconds to get a precise estimate

after the resource change (as shown in Figure 6.2), an adaptation is triggered as soon

any change is detected while the limited options in the performance database happen to

satisfy the degraded stable CPU level. However, several issues may decide how adapta-

tions happen in a real execution scenario, based on different policies including whether

to react at the leading edge when any change is detected or at the trailing edge when

a stable level is reached, and whether to choose a configuration that aggressively opti-

mizes the objective function or one that conservatively keeps other constraints (e.g., the

value of a QoS metric) well within prescribed bounds. The choice could affect the how

responsive the application adapt and how well user preferences are satisfied.
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8.6 Summary

Relying on the notion of application tunability, our framework enables automatic adap-

tation of the Active Visualization application. We first specify its control knobs using

the tunability interface, identifying three control parameters: image resolution level,

(increment of) fovea size, and compression method. The tunability interface allows

enumeration of various configurations through different setting of control parameters,

and measuring of their performance reflected in the value of QoS metrics. The virtual

execution environment permits the control of diverse resource availability, therefore

making it possible to find out which configuration is suitable for what execution sce-

narios. At run time, a monitoring agent detects the resource availability, providing

information to the resource scheduler which could dynamically find the most appropri-

ate execution scheme for the application. As a result, we observe a big improvement on

both user satisfaction and application performance in an environment with dynamic re-

source conditions. For this application, tunability opportunity is convenient to express

and it enables the framework to make appropriate adaptation decision automatically.

In the profiling and run-time adaptation stage of this application, we have been as-

suming the resource condition at the server side is fixed. In fact, our client is the only

client accessing the server. However, the resource condition at the server side is very

likely to change when multiple clients request images at the same time. For such a sce-

nario, we could add additional parameters in execution environment representing the

load of the server. This could be a single parameter (as an event) specifying the number

of clients requesting service at the same time, or two parameters specifying the CPU

share and network bandwidth available to the thread serving the client. As a result,

monitoring agents would run on both the client side and the server side, the notifica-

110



tion messages send to the steering agents (that export the parameters in the tunability

interface), which in turn ask for the resource scheduler for a new configuration when

resource condition changes. The new configuration is selected for both the client and

the server, which set up their own control parameters to choose a different configura-

tion (no action by the server if it exposes only environment parameters but no control

parameters); therefore, achieving adaptation based also on the load of the server host.
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Chapter 9

Case Study: Junction Detection

Junction Detection application is an image processing application developed by the vi-

sion research group at New York University. It detects a set of pixels in an image where

color or intensity changes abruptly, serving as a core component of many image pro-

cessing applications. We parallelize it to run on the Calypso system—a metacomputing

environment that supports concurrent application on a cluster of workstations. Calypso

applications have the flexibility in utilizing a variable number of machines. We take this

application and expose its flexibility using our framework. In this chapter, we will first

describe the structure of this application and its tunability opportunities; show how to

expose its various configurations using tunability interface; generate profiles for its con-

figurations; and evaluate this framework using experiments in which the characteristics

of input images and the image arrival patterns are dynamically changed.
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9.1 Application Structure

The parallel version of Junction Detection is built using Calypso system, using Calypso

language constructs and linked with Calypso run-time library. In this section, we first

introduce Calypso system, and then describe the structure of the Junction Detection

application.

9.1.1 Calypso System

Calypso takes advantage of two execution techniques with strong theoretical founda-

tions [19, 43]—two-phase idempotent execution strategy, and eager scheduling—to

provide programmers with the view of a fault-free virtual shared memory environment,

even when the underlying resources may incur faults and exhibit wide variations in

processing speeds.

The Calypso programming system views computations as consisting of several par-

allel tasks inserted into a sequential program (see Figure 9.1). These parallel tasks

running onworker machines are responsible for performing the computationally in-

tensive work, while the sequential code (Manager) is responsible for the high-level

control-flow and I/O. Within a parallel step, Calypso supports CREW (concurrent read,

exclusive write) semantics to shared data structures, with updates visible only at the

end of each parallel step. Additionally, the parallel tasks are idempotent, implying that

a code segment can be executed multiple times (with possibly some partial executions),

with exactly-once semantics. These multiple executions mask any faults in the under-

lying resources.

Calypso augments standard C++ with four keywords:shared , parbegin , parend ,

and routine . Globally shared variables are declared using the keywordshared .
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1. sequential step (manager)

2. parallel step (workers)

4. parallel step (workers)

3. sequential step (manager)

5. sequential step (manager)

Figure 9.1: A fragment of an evolving Calypso computation, with interleaving sequential and

parallel steps.

parbegin andparend help delimit a parallel step consisting of a sequence ofrou-

tine statements:

parbegin

routine [ int-exp ](int width , int number )

routine-body1

routine [ int-exp ](int width , int number )

routine-body2

parend;

Theroutine statements specify tasks within the parallel step:routine-body1and

routine-body2are sequential C++ program fragments,int-expspecifies an integer ex-

pression indicating the number of copies of each routine to be created within the parallel

step, andwidthandnumberare arguments provided to each task denoting, respectively,

the number of tasks created and the sequence number of the specific task among these

tasks. As shown in the code fragment above, each parallel step may consist of multiple

routine statements. Concurrency exists both inside one routine and among multiple
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routines within the same parallel step. Calypso applications are able to utilize, in each

parallel step, as many machines as the number of copies of all routines of the step.

Calypso system is implemented on both Windows NT and Linux operating sys-

tems. The version [18] on Windows NT allows allocating to applications only through

a graphical user interface (GUI). The interactive feature of the interface presents a nat-

ural way to automatically control the application execution environment (in terms of

the number of machines allotted).

9.1.2 Junction Detection Application

The Junction Detection [38] application detects distinguished sets of pixels in an image

where the intensity or color changes abruptly, often serving as a precursor to shape

construction and classification tasks. Our Junction Detection computation consists of

three steps as in Figure 9.2. The first step samples a subset of the pixels in parallel

in some granularity and performs a quick test to determine whether or not the tested

pixel is of interest. A pixel is of interest if the difference among intensities/colors of

its neighbor pixels is beyond a threshold. The second step draws a region of interest

around a cluster of interesting pixels. The region is essentially a convex hull containing

at least a certain number of interesting pixels in close proximity. Finally, the third step

runs a computation intensive algorithm for every pixel in the regions of interest to detect

all the junctions. Figure 9.3 illustrates a simplified version of the source code of this

application.

The execution of Junction Detection application for processing an image involves a

manager machine and a few number of worker machines. When multiple images need

to be processed at the same time, multiple managers run on the same machine, with a
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Junction detection An execution scheme

retrieve input image

sample input image

find detection regions

detect junctions

manager

manager

workers

workers

Figure 9.2: Structure of the parallel Junction Detection application and a possible processor-

allocation scheme.

cluster of worker machines space-partitioned or time-shared among multiple executions

depending on the decision of a resource scheduler.

9.2 Tunability of Junction Detection

The Junction Detection application is tunable in several senses: for example, the com-

putation can trade off the amount of resource requirements between different compu-

tation steps: a larger allocation of more processors in the first step may be able to

compensate a smaller allocation of in the third step to achieve the same level of perfor-

mance. Here, however, we focuses on only the choice of two parameters: the sampling

scheme (i.e., granularity) and the worker machine allocation scheme (i.e., the number

of machines allocated to parallel tasks).

The purpose of sampling is to reduce the size of regions to be processed and there-

fore the amount of computation in the third step; however, at the cost of more compu-
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// retrieve input image

int num workers = 8;

int sample granularity = 4;

bool first time = true;

if (first time) fcalypso spawnWorkers(num workers); first time = false; g

// step 1: sample input image

parbegin routine[num tasks](int total task, int task index) f

// sample pixels based "sample granularity" and "task index"

g parend; // step 2: find detection regions

// ...

// step 3: detection junctions in regions of interest

parbegin routine[num tasks](int total task, int task index) f

// detect junctions in regions allocated to "task index"

g parend;

Figure 9.3: Original Calypso code of Junction Detection

tation for sampling itself in the first step. The exact amount of increment or decrement

in computation depends on the algorithms used in these two steps, and thereby can be

affected by the characteristics of the input image.

As a Calypso parallel application, a general parameter is the number of worker

machines allocated to parallel steps. In general, with more machines allocated to the

computation, the processing of the image is faster; however, the speedup may not be

linear. In other words, with additional machines allocated, the application may not be

able to utilize them as efficiently. In that case, it may be more efficient to give these
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machines to other computations.

The control parameters trade off resource utilization for application performance:

allocating more worker machines to a single application may speed up its execution but

degrade the overall system performance; and the arrival of images of different charac-

teristics requires different sampling schemes to best utilize the system resources.

Identification of these control “knobs” permits adaptation by exploiting different

number of worker machines for the parallel tasks and selecting appropriate sampling

schemes for images with different numbers of interesting objects. Although these two

parameters come from the flexibility of the Calypso system and the flexibility of the ap-

plication structure respectively, both can be manipulated through the common control

messages interface. The control messages in turn triggers different actions in the appli-

cation: change of sampling scheme only involves setting of a variable whereas change

of the machine allocation scheme requires control of the Calypso system, which is

performed by simulating manual operation on Calypso-NT user interface (for Linux

version of Calypso, this can be easily done through a Calypso API call).

For this application, tunability provides flexibility for optimizing performance based

on external conditions, such as characteristics of input data and the overall resource

requirement in the entire system.

9.3 Application Annotation

The Junction Detection application runs on both Windows NT and Linux with slight

modification to fit different Calypso implementations. We focus on its Windows NT

version where application is started and allocated resources through a GUI interface

(which we can control by injecting transition functions to support adding and removing
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Tunability Parameter Declaration

< control param>

< param type="int" externname="sample"

localname="sample granularity" />

< param type="int" externname="worker"

localname="num workers" />

< /control param>

< resourceparam>

< param type="int" name="image class" />

< param type="int" name="image arrival interval" />

< /resourceparam>

< QoS param>

< qos type="double" externname="duration"

localname="process time" dir="dec"/>

< /QoS param>

Figure 9.4: Declaration of tunability parameters for Junction Detection using annotation, in-

cluding control parameters, resource parameters, and QoS metrics.

processors). The resources considered are the number of machines (i.e., processors) in a

cluster of PCs. Although the resource description could be arbitrarily detailed including

per-host parameters such as CPU load and network bandwidth, we restrict our attention

to homogeneous hosts whose resource conditions can be abstracted in terms of just the

number of available worker machines.
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Tunability Annotation of Junction Detection
< component name="junction fworker gfsample g" >

Tunability parameter declaration, e.g., control parameters, ...

< QoS monitor> double process time = 0; double t0 = clock(); < /QoS monitor>

int num workers = 8;

int sample granularity = 4;

bool first time = true;

if (first time) fcalypso spawnWorkers(num workers); first time=false; g

< transition from="oldctl" to="newctl">

if (oldctl.worker != newctl.worker) f// handshake with Calypso g

< /transition>

// step 1: sample input image

parbegin routine[num tasks](int total task, int task index) f

// sample pixels based "sample granularity" and "task index"

g parend;

// step 2: find detection regions

< transition from="oldctl" to="newctl">

if (oldctl.worker != newctl.worker) f// handshake with Calypso g

</transition>

// step 3: detection junctions in regions of interest

parbegin routine[num tasks](int total task, int task index) f

// detect junctions in regions allocated to "task index"

g parend;

< QoS monitor> process time = clock() - t0; < /QoS monitor>

< /component>

Figure 9.5: Exporting component tunability interface for Junction Detection, including various

parameters (as in the thick box), and other constructs (in bold). The original source code is

enclosed in thin boxes.
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Annotation for identifying configurations

The entire image processing procedure can be viewed as one tunable component. The

various configurations are different settings of this component. The tunability parame-

ters and the annotation of the source code is illustrated in Figure 9.4 and Figure 9.5.

Control parameters The annotation<control param> in Figure 9.4 identifies local

variablessample granularity andnum workers as control parameters, giving

the namesample and worker respectively. These two parameters determine the

sampling scheme and the worker machine allocation scheme that influence the behavior

of this application.

Tunable components The processing of an image is treated as a single component

namedjunction fworker gfsample gby a<component> construct as in Figure 9.5.

Inside this component are the annotated source code, the specification of the tunability

parameters including control parameters, resource parameters, and QoS metrics (i.e.,

the annotation code in Figure 9.4), and other annotation constructs such as<transi-

tion> and<QoS monitor>.

Annotation for monitoring and controlling execution

The communication interface with various monitoring agents are defined as part of

execution environment while the monitoring of application progress is specified using

QoS metrics and their evaluation constructs (i.e.,<QoS monitor>). The transition

functions specify the application-specific functions invoked when switching between

different configurations.
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Execution environment The execution environment, specified by<resource param>

in Figure 9.4 only considers the varying execution conditions, in this case, the charac-

teristics of the input image and the image arrival interval. The characteristics of input

data is listed as part of execution environment since we assume some agent (either in-

side or outside the application) can analyze the input and notify the application (in fact,

its steering agent) of the classification result. It in general can be viewed as part of the

context information of application execution. For an interactive application, both the in-

put data and its classification can change dynamically. In this sense, the characteristics

of input data is similar to the property of system resources.

QoS metrics The <QoS param> construct in Figure 9.4 specifies a single perfor-

mance metric of interest to this application, the duration for processing an image that

maps to the local variableprocess time . The performance level increases with a

smaller duration. This metrics is measured by code segments contained within two

QoS monitor constructs in Figure 9.5.

Transition functions Configurations can change either in the sampling granularity or

in the number of worker machines. The change of the latter needs to be accompanied

by a handshake between the application and the underlying Calypso system. This hand-

shake, expressed using the transition functions (i.e.,<QoS param> construct in Fig-

ure 9.5), results in the addition or removal of Calypso workers employed for executing

the parallel tasks. A transition function is added before each parallel step, permitting

assigning different number of machines to each of the parallel tasks.
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Interface for adaptation at binary level

Although we did not implement the tunability interface at binary level for enabling

adaptation of Junction Detection application, the binary-level modification is straight-

forward and should be simpler than that of Active Visualization application because of

the less number of control parameters and environment parameters. The only transition

function is the handshaking with the underlying Calypso system, which is independent

of a particular application and works for all Calypso applications. This means the hand-

shaking code could be implemented inside a dynamic library (i.e., DLL) and invoked at

proper points of intercepted functions (e.g., the function that implementsparbegin ).

9.4 Application Profile

Similar to the Active Visualization application, a driver program repeatedly executes

the Junction Detection application on a cluster of PCs to obtain a mapping between the

control parameter values and the output qualities for a wide range of resource condi-

tions, using images of different characteristics. For simplicity, we restrict our attention

to execution environments where the only allowed change in resource conditions is the

number of worker machines available to the application. This permits us to summa-

rize the resource conditions in terms of a single parameter, the number of workers,

assuming a homogeneous cluster with constant CPU speed and network bandwidth.

To model input image characteristics, images are grouped into equivalence classes and

representative subsets from these classes are profiled. The measurements reported here

are obtained on a cluster of Pentium Pro 200 MHz worker machines connected by a

100 Mbps switched Ethernet.

Figure 9.6 shows the execution time for images belonging to three representative
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Figure 9.6: Profiling images with different amount of artifacts (left) and the corresponding

execution times of different sampling schemes as the number of machines allocated vary (right).
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classes and for different sampling schemes as the number of worker machines is varied.

The three sampling schemes (referred to as Sampling 1, Sampling 2, and Sampling 3

in Figure 9.6) correspond to the “sampling” control parameter being set to values of 4

pixels, 16 pixels, and 64 pixels respectively. The graphs show that the more artifacts

an image has, the more time it takes to compute all of its junctions. However, different

sampling schemes best suit images with different amounts of artifacts. Sampling 1

yields better performance for images with a large amount of artifacts (e.g., image 3),

while Sampling 3 yields better performance for images with a small number of artifacts

(e.g., image 1). In addition, as expected application execution time decreases as the

number of worker machines increases; however, the speedup does not scale linearly

attesting to the importance of having measured profiles.

9.5 Evaluation of the Framework

We use an NT implementation of the Calypso system, with a separate machine exe-

cuting the manager code and manipulating the GUI interface. The user preferences of

interest are to either minimize the execution time for detecting junctions within a single

image, or to constrain this time to be within a deadline. The input to the application is

a sequence of images belonging to different image classes, which arrive in the begin-

ning or periodically with a specific interval. Over the entire run of the application, this

period is assumed to be quasi-static; i.e., it changes only at a coarse granularity.

For adaptive execution, the external scheduler searches the performance database to

find the best sampling scheme and number of workers to process a collection of images.

The scheduler follows the standard interface described in Chapter 4: it takes an tem-

plate that provides sufficient information about the tunability parameters and the format
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of the database. To make it capable of managing a cluster of machine for requests with

timeliness constraints, we assume it knows the semantics of environment parameters,

including the number of worker machines requested and the periodical nature of the im-

age arrival pattern (in terms of the arrival interval). The external changes of concern are

the arrivals of images of different classes and the variation of the arrival intervals. Both

of the changes are assumed to be monitored by an external agent that informs the ap-

plication through control messages sent to the steering agent. As described earlier, user

preferences are satisfied by reconfiguring the application at run time; the granularity of

the reconfiguration is the processing of a single image.

To capture typical usage scenarios of the Junction Detection application, we de-

scribe two experiments below that show adaptation of the application to changes in the

characteristics and arrival patterns of input images. These experiments carefully isolate

the possible adaptation behaviors of the application: the first experiment shows how

the application can adapt to an image sequence comprising images belonging to differ-

ent classes, when the number of workers available for processing a particular image is

kept fixed. The second experiment demonstrates application adaptation in response to

changes in the image arrival interval assuming that all images belong to the same class;

here the application adapts by controlling the number of workers devoted to processing

a single image. Figure 9.7 and Figure 9.8 show the per-image execution time achieved

by the application for a sequence of images. The x-axis of the plots refers to the time

when processing of a particular image is complete. As before, the solid line in each

plot shows the performance of the adaptable form of the application and the other lines

show performance achieved by the corresponding non-adaptable versions. Details of

the image sequence and system conditions are provided below.
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Experiment 1: Adapting sampling scheme to input classes Figure 9.7 shows adaptation

of sampling schemes in response to arrival of different classes of input images, for

a sequence of images whose classes are chosen randomly to be either type image 1 or

type image 3 (see Figure 9.6). We assume that the number of worker machines allocated

towards processing a single image is fixed to 4 and that all images arrive at the start of

the experiment and are processed one by one. The user preference is to minimize the

total execution time required for processing the image sequence.
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Figure 9.7: The Junction Detection application satisfies user preferences by adapting sampling

schemes to different classes of input

The adaptable version of the application automatically chooses sampling scheme 3

for images of type 1 and sampling scheme 1 for images of type 3, when notified of

the class of the arriving image. As a result, it finishes much earlier than non-adaptable

versions of the application with fixed sampling schemes, with a 17% and 27% improve-

ment over versions relying upon sampling scheme 1 and sampling scheme 3, respec-

tively. The execution time shown here is slightly larger than in Figure 9.6 because of

the startup overhead of Calypso GUI interface and the interference from the scheduler
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itself. We require the scheduler to consider the start-up cost in making dispatching

decisions.

Experiment 2: Adapting worker allocation to image arrival patterns Figure 9.8 shows

application adaptation by tuning the allocation of worker machines in response to vari-

ations in image arrival intervals. The user preference is to constrain the per-image pro-

cessing time to be within a deadline of 120 seconds while trying to minimize the overall

time required for processing the image sequence. The environment change is the image

arrival pattern, which is initially set to one every 120 seconds, changes to one every 50

seconds after 200 seconds have elapsed in the experiment, and then reverts back to one

every 120 seconds after 500 seconds. We use a total number of 8 worker machines and

1 manager machine, permitting the application to use any number of workers from 1 up

to 8 for processing a particular image. The experiment uses images of type 1 as input

and is set to stop after 800 seconds have elapsed.
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Figure 9.8: The Junction Detection application satisfies user preferences by adapting allocation

of worker machines to variation in image arrival intervals.
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Initially when the image arrival interval is 120 seconds, the application scheduler

decides to give all the eight worker machines to each image because images do not

overlap in their request for resources. When the image arrival interval changes to 50

seconds, the application gets notified by an external agent and triggers the scheduler

to compute a new configuration. As a result, the scheduler decides to give each im-

age 4 worker machines because two images may simultaneously need resources and

must each finish within the specified deadline. In order to explain this scheduling de-

cision, note from Figure 9.6(a) that the lowest execution time for processing images of

class one is 100 seconds with 4 workers and 60 seconds with 8 workers (and that the

scheduler takes into consideration extra time needed to start and control Calypso GUI

interface). The initial allocation scheme would cause missing deadlines for a period-

ical arrival interval of 50 seconds. Similarly, the scheduler reverts back to allocating

all machines to each image when the arrival interval changes back to 120 seconds. To

compare how user preferences are satisfied with non-adaptive executions, we run the

same image sequence again with two worker allocation schemes, which are fixed at

using 8 machines or 4 machines respectively. The results show that with the first allo-

cation scheme, some images miss their deadlines when the arrival interval is 50 seconds

because at least two images (in the worst case four images) are time-sharing the worker

machines at the same time, interfering each other’s execution. For the second alloca-

tion scheme, all the images finish by the deadline (the slightly longer execution time

in the middle of the curve is due to the sharing of the manager machine and network

resources). However, the total execution time is 10% longer than with the adaptive

execution.
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9.6 Summary

The Junction Detection application exhibits its tunability in the sense that different ex-

ecution schemes are best suited to different execution context. We first specify its con-

trol knobs using the tunability interface, identifying two control parameters: sampling

scheme and machine allocation scheme. The tunability interface allows enumeration of

various configurations through different setting of control parameters, and measuring

of their performances as values of QoS metrics.

Since only resources are assumed to be homogeneous machines which can be rep-

resented simply by a number, we do not need to control their CPU and network avail-

ability using our virtual execution environment. The profiling is performed on a cluster

of PCs, enumerating different configurations and varying parameters for the number of

worker machines and the characteristics of input data. The profiling information plays

a critical role for the scheduler to automatically configure the application to select an

appropriate execution. As result, the framework automates the adaptive selection of

sampling scheme and worker machine allocation scheme based on external conditions,

such as characteristics of input data and overall requests for system resources. These

adaptive executions greatly improve the performance of this application and user pref-

erences. For this application, tunability allows natural expression of various configura-

tions and enables the scheduler to make proper adaptation decisions.

130



Chapter 10

Concluding Remarks

This chapter summarizes this dissertation and discusses future work as well as the di-

rection that its general thesis leads to.

10.1 Summary of This Dissertation

We observe that many applications naturally exhibittunability opportunity, permitting

selecting appropriate behavior from multiple configurations; however, no single con-

figuration is always preferred for all execution scenarios. In this dissertation, we have

described the notion ofapplication tunabilityas flexibility in application execution

schemes that trade off resource requirements and output quality among alternate con-

figurations. These configurations may best match different execution conditions. This

observation motivates automatic application adaptation taking advantage of tunability

opportunity in applications. In this dissertation, we have developed an application-

independent adaptation framework that simplifies the design of tunable applications,

which proactively monitors the underlying environment and actively controls applica-
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tion execution to ensure a desired level of service.

To expose the alternate application configurations as well as the way to control and

measure their execution, this framework supports an application-independent tunability

interface, realizable either at the source code level using an XML-like annotation con-

structs or at the binary level using function interception combined with annotation. In

each case, the preprocessor generates code for tunable applications based on the anno-

tated program. To model the behavior of various application configurations, this frame-

work builds a resource-constrained virtual execution environment using API intercep-

tion and modern OS features allowing control of the amount of resources available to

application execution. A driver program can profile these configurations by varying re-

source conditions on the virtual execution environment. To monitor the resource avail-

ability to application execution, this framework constructs run-time monitoring agents

that proactively monitors resource conditions. To control application execution dynam-

ically, this framework injects a steering agent into application that communicates with

other run-time components and application instances using control messages. Com-

bined with inline code generated from the tunability interface, the steering agent can

set up alternate configurations. To make adaptation decisions based on execution en-

vironment, this framework has experimented with different resource schedulers that

can make proper decision at run time to satisfy user preferences. Similar resource

schedulers can be plugged into this framework by complying with its control message

interface and exploiting application tunability parameters and performance databases.

We have evaluated the advantage of tunability and our framework using simulation

of a parameterizable system and two large applications: an interactive distributed im-

age visualization application and a parallel image processing application on Windows
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NT platform. The simulation shows that application tunability can benefit both ap-

plication execution and overall system resource utilization. The experiments with the

applications show automatic adaptation to changes of execution environment charac-

teristics such as network bandwidth or image arrival pattern by switching application

configuration to satisfy user preferences for output quality and execution timeliness.

10.2 Conclusion

This dissertation has shown that the availability ofalternate application configura-

tionsprovides a powerful model for the construction and execution of adaptive applica-

tions. Exposing and constructing of application tunability can be achieved by exploiting

source-level annotation, modeling application behavior on the virtual execution envi-

ronment, allowing automatic selection of configurations at run time based on user pref-

erences and execution conditions such as resource availability. Such applications can

adhere to a standard interface so that configuration of applications, measuring of execu-

tion, and run-time adaptation can be automated; which in turn can automate (to a large

extent) the development of tunable applications. Our framework presents an example

for application structuring as well as for evaluating and selecting among the alternate

application configurations.

This framework eliminates the need for adaptation decisions to be explicitly pro-

grammed into the application by relying on three components: (1) atunability interface,

which exposes adaptation choices in the form of alternate application configurations

while encapsulating core application functionality; (2) avirtual execution environment,

which emulates application execution under diverse resource availability enabling off-

line collection of information about resulting behavior; and (3)run-time adaptation
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agents, which permit the monitoring and steering of application execution. Together,

these components permit automatic run-time decisions onwhento adapt by continu-

ously monitoring resource conditions and application progress, andhow to adapt by

dynamically choosing an application configuration most appropriate for the prescribed

user preference.

10.3 Future Work

In this project, we have made some implicit assumptions to simplify our work. The

following list some of them that can be addressed in the future work,

1. Negligible adaptation overhead, we have assumed that application adaptation in-

curs negligible overhead. However, this may not be the case for all applications

and allowed adaptations. Future work could eliminate this assumption by adding

overhead functions to approximate application behavior when adaptation is trig-

gered. Resource schedulers would take into consideration of this cost when sug-

gesting the most appropriate configurations.

2. Switching to any configuration, we have assumed that applications at run time can

switch from any configuration to any other configuration. Future work could elim-

inate this assumption by supporting specification of the constraints for switching

between configurations. Resource schedulers can only select configurations to

which switching is allowed from the current configuration.

3. Adaptation only to significant changes, we have implicitly assumed that adapta-

tion only happens when the resource availability changes significantly and at the

same time ignored the issue of adaptation agility. Future work could study how

responsive applications should react to external changes. Frequent reactions may
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not be appropriate in many cases.

4. No need for synchronization, we have assumed there is no need for synchronizing

between different application instances when adaptation is triggered. Even when

there is a need for agreeing on the compression method in the Active Visualiza-

tion application, we ignored the problem by requesting the server to identify the

compression method at the beginning of each of its messages. However, adapta-

tion synchronization may be in general required for multiple application instances

to agree on the new configuration and adapt in an specific order (or at the same

time). Future work may need to address this issue.

5. Simple adaptation policy, we have assumed that it is sufficient to express user-

specific policies in QoS constraints (as user preferences), which only allows spec-

ification of a range of the QoS metrics and optimization of a single QoS metric.

For some applications, users may want to express their policies with more pow-

erful tools, such as generic equations of QoS metrics. This would require a sym-

bolic interpretation of the policies as well as corresponding resource schedulers.

Future work could conduct further investigation in this direction.

Future work could also strengthen the current prototype and provide more support

to some components of the framework, including,

1. Sensitivity analysis tools, in our current work, we use exhaustive profiling to ob-

tain the behavior of various application configurations. Some of the effort yield

meaningless results either because a particular configuration benefits application

in no circumstances or the performance under a resource condition has already be

covered by (the interpolation of) other profiling results. Future work could look

into sensitivity analysis tools that determine which points in resource availability

space should be more thoroughly profiled, and perform selective profiling.
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2. Analytical approximation of performance database, in current framework, per-

formance databases are specified in a discrete form to enable the construction

of generic resource schedulers. Future work could analyze data in performance

databases to obtain an analytical approximation. In addition, this approximation

could be combined with run-time feedback (in terms of current values of QoS

metrics) to provide proper information for making correct adaptation decisions at

run time.

3. Binary-level tunability interface, in our current work, we have supported adding

tunability to application binaries using code injection and function call intercep-

tion techniques, in a prototype for the Active Visualization application. Future

work could extend the tunability interface to specify which function calls to rein-

terpret and to allow associating specific actions with the new function implemen-

tation. Ideally, the binary-level approach could wrap the original application bi-

nary and build a COM-like component to expose a tunability interface so that

shrink-wrapped applications could adapt to execution environment based on user

preferences.

10.4 Perspective

The generic spirit of this dissertation lies in the recognition of multiple configurations

of a same logical computation unit that are suitable for different execution scenarios

and in the effort of automating the selection among them adaptively for improvement

in application performance. Although this work was done on Windows NT platform

with a few case studies, this spirit can be extended to many other applications and

other platforms such as resource-constrained PDA devices. Applications could have
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different configurations for these heterogeneous platforms that can work together in-

terchangeably. For instance, when an application moves from one device to another, it

can continue from where it was, but more importantly, can automatically select another

configuration that best utilizes the new environment. It is even possible to have config-

urations that works across devices, having the computation at one platform and display

or input at another platform.

For applications running on resource-constrained devices where computation and

memory capability is relatively small and supporting wireless communication exhibits

a diverse variance in bandwidth, it is desirable that these applications have a resource-

efficient configuration when executing isolated on the device, and another capability-

enhanced configuration that goes out to find necessary components or services on the

network to combine into itself when connected with outside world. These multiple

configurations may even include binary code for different platforms within the same

container, for instance, a form for running on PalmOS, another form for running on

Linux, and a third form for running on Windows NT/2000. This container can be

stored on a server (or itself can be a server) that allows code downloading to various

platforms. A Palm application can just download the appropriate configuration, install

and run it on the fly without having it stored permanently on the device; or even more

aggressively, download the appropriate configurations of various components and build

up the application just before execution.

This leads to another direction for extending the current work—on the fly construc-

tion of application configurations, which could seek support from the existingcom-

ponent modelsuch as the Microsoft COM and the Sun JavaBeans, where components

export standard interfaces and reflection mechanisms. Tunability interfaces could be
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implemented as part of what gets exported from a component. The reflection mecha-

nism of the component model could be extended to support dynamic construction of

a specific configuration on the fly. This configuration, in its compact form, may only

have guidelines as to what components it needs and how to combine them together.

It would be interesting if we can dynamically inject tunability opportunity (as well as

the run-time agents) inside an existing component to expand its exported interfaces and

turn it into a tunable component so that it can reflect on its different configurations,

monitor its environment, and adapt itself to different execution contexts.

Although in the case studies included in this work, adaptation only happens at appli-

cation end-points, some application instances might reside inside the connecting net-

work between the end-points. The selection and combination of these components

into applications can themselves be adapted to dynamic environment conditions. For

instance, the output quality could be dynamically improved if the system finds more

powerful components to substitute for the existing ones when realizing it just encoun-

ters a sub-network with more resources and services.

In summary, it is our belief that, with the current trends of increasingly heteroge-

neous resource-constrained devices, downloadable code, networking computing, and

component model, application alternate configurations and dynamic construction and

selection of these configurations would increase the satisfaction of user preferences by

presenting more choices and appropriately adapting their behavior to the execution en-

vironment. Many projects are heading toward this direction. We believe that in the

near future flexible application structuring and adaptation would occurs anywhere from

inside network to application end-points, providing more powerful and satisfactory ser-

vices to end users.
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